test_softmax_op.py 2.7 KB
Newer Older
Q
qijun 已提交
1
import unittest
Q
Qiao Longfei 已提交
2

Q
qijun 已提交
3
import numpy as np
Q
Qiao Longfei 已提交
4
import paddle.v2.framework.core as core
Y
Yu Yang 已提交
5
from paddle.v2.framework.op import Operator
Q
Qiao Longfei 已提交
6 7

from op_test_util import OpTestMeta
Q
qijun 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21


def stable_softmax(x):
    """Compute the softmax of vector x in a numerically stable way."""
    shiftx = x - np.max(x)
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


class TestSoftmaxOp(unittest.TestCase):
    __metaclass__ = OpTestMeta

    def setUp(self):
        self.type = "softmax"
D
dangqingqing 已提交
22 23 24 25
        self.inputs = {'X': np.random.random((32, 100)).astype("float32")}
        self.outputs = {
            'Y': np.apply_along_axis(stable_softmax, 1, self.inputs['X'])
        }
Q
qijun 已提交
26 27


Q
Qiao Longfei 已提交
28 29
class TestSoftmaxGradOp(unittest.TestCase):
    def test_softmax_grad(self):
Y
Yu Yang 已提交
30
        op = Operator('softmax', X="X", Y="Y")
Q
Qiao Longfei 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        backward_op = core.Operator.backward(op, set())
        self.assertEqual(backward_op.type(), "softmax_grad")
        expected = '''Op(softmax_grad), inputs:(X, Y, Y@GRAD), outputs:(X@GRAD).'''
        self.assertEqual(expected, str(backward_op))

        batch_size = 3
        class_num = 5
        # Initialize X and add 1e-2 for numerical stability
        Y = np.random.rand(batch_size, class_num).astype(np.float32)
        Y = Y + 1e-2
        dY = np.random.rand(batch_size, class_num).astype(np.float32)

        # Reference implementation of cross entropy with soft labels
        def label_softmax_grad(Y, dY):
            dX = Y * 0.0
            for i in range(batch_size):
                d = np.dot(Y[i, :], dY[i, :])
                dX[i, :] = Y[i, :] * (dY[i, :] - d)
            return dX

        expected = label_softmax_grad(Y, dY)

        scope = core.Scope()
        places = []
        places.append(core.CPUPlace())
        if core.is_compile_gpu():
            places.append(core.GPUPlace(0))

        for place in places:
            y = scope.new_var("Y")
            y_tensor = y.get_tensor()
            y_tensor.set_dims([batch_size, class_num])
            y_tensor.alloc_float(place)
            y_tensor.set(Y, place)

            dy = scope.new_var("Y@GRAD")
            dy_tensor = dy.get_tensor()
            dy_tensor.set_dims([batch_size, class_num])
            dy_tensor.alloc_float(place)
            dy_tensor.set(dY, place)

            x = scope.new_var("X")
            dx = scope.new_var("X@GRAD")

            tensor = scope.find_var("X@GRAD").get_tensor()
            backward_op.infer_shape(scope)
            self.assertEqual([batch_size, class_num], tensor.shape())

            ctx = core.DeviceContext.create(place)
            backward_op.run(scope, ctx)
            actual = np.array(tensor)

            np.testing.assert_almost_equal(actual, expected, decimal=3)


Q
qijun 已提交
86 87
if __name__ == '__main__':
    unittest.main()