optimizer.py 79.8 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
from collections import defaultdict
18
from functools import reduce
19

20
from paddle.fluid import core
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22 23
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program
from paddle.fluid.layers import tensor
24

25 26
from . import framework
from . import layers
27
from . import unique_name
28
from .backward import append_backward
29
from .clip import append_gradient_clip_ops, error_clip_callback
30 31
from .dygraph import base as imperative_base
from .dygraph.learning_rate_scheduler import LearningRateDecay
32 33 34
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
35
from .layers import ops
36
from .regularizer import append_regularization_ops
37
from .wrapped_decorator import signature_safe_contextmanager
38

39
__all__ = [
Q
qiaolongfei 已提交
40
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
41
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
42
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
43
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
Y
Yibing Liu 已提交
44
    'LarsMomentumOptimizer', 'DGCMomentumOptimizer', 'LambOptimizer'
45
]
Q
Qiao Longfei 已提交
46 47 48 49 50 51


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
52 53
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
54 55
    """

X
Xin Pan 已提交
56
    def __init__(self, learning_rate, regularization=None, name=None):
L
lujun 已提交
57
        if framework.in_dygraph_mode():
M
minqiyang 已提交
58 59 60 61 62 63 64 65 66 67 68 69
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, LearningRateDecay):
                raise TypeError(
                    "learning rate should be float or LearningRateDecay, got %s here"
                    % type(learning_rate))
        else:
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, framework.Variable):
                raise TypeError(
                    "learning rate should be float or Variable, got %s here" %
                    type(learning_rate))

W
whs 已提交
70
        self._name = name
D
dzhwinter 已提交
71
        self.regularization = regularization
72
        self._learning_rate = learning_rate
D
dzhwinter 已提交
73 74
        # the learning rate type should be inferenced from loss
        self._dtype = None
75
        # each program should have a independent learning rate
76
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
77
        self._learning_rate_map = dict()
78
        if isinstance(self._learning_rate, framework.Variable):
79 80
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
81 82 83 84 85
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
86
        self.helper = None
87 88 89 90
        self._opti_name_list = []

    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
91

Q
Qiao Longfei 已提交
92
    def _create_global_learning_rate(self):
93 94 95
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
96 97 98 99 100 101 102 103 104 105 106 107
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
108
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
109
            elif isinstance(self._learning_rate, LearningRateDecay):
110 111 112
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
Q
qiaolongfei 已提交
113
                raise TypeError(
114 115
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
116
        else:
117 118 119 120
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
121 122 123 124 125 126
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
127

128 129 130 131 132 133 134 135
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
136

Y
yuyang18 已提交
137
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
138 139 140 141
        """
        get global decayed learning rate
        :return:
        """
142 143
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
144
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
145

Q
Qiao Longfei 已提交
146 147 148 149 150
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

151 152 153 154
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
155 156
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
157
        else:
W
Wu Yi 已提交
158
            if param_lr == 1.0:
Y
yuyang18 已提交
159
                return self._global_learning_rate()
W
Wu Yi 已提交
160
            else:
X
Xin Pan 已提交
161 162 163
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
164
                    return self._global_learning_rate() * param_lr
165 166 167 168 169 170 171

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
172
        """
173 174
        pass

175
    def _finish_update(self, block, parameters_and_grads):
176 177 178 179 180 181 182 183
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
184
            None
185 186 187
        """
        pass

188 189 190 191 192 193
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
194 195 196 197 198 199 200 201 202
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
203 204
        if self._name is not None:
            name = self._name + "_" + name
205 206
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
207
            if framework.in_dygraph_mode():
X
polish  
Xin Pan 已提交
208
                return self._accumulators[name][param.name]
209
            raise Exception("Accumulator {} already exists for parameter {}".
210
                            format(name, param.name))
211 212
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
213
        assert isinstance(self.helper, LayerHelper)
214 215 216 217 218

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
219
        var = self.helper.create_global_variable(
220
            name=var_name,
Q
Qiao Longfei 已提交
221
            persistable=True,
F
fengjiayi 已提交
222
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
223
            type=param.type,
224
            shape=shape)
Q
Qiao Longfei 已提交
225
        self.helper.set_variable_initializer(
226
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
227
        self._accumulators[name][param.name] = var
228
        return var
229 230 231 232 233 234 235 236 237 238 239

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
240 241
        if self._name is not None:
            name = self._name + "_" + name
242 243 244 245 246 247
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

248
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
249 250 251
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
252
          parameters_and_grads(list(tuple(Variable, Variable))):
253
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
254 255

        Returns:
256
          return_op_list: a list of operators that will complete one step of
257 258 259
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
260
        """
261 262 263 264 265
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
266
        # for parameters and extend _finish_update method to add custom ops.
267

268 269 270 271 272 273 274 275 276
        # Allways called under program_guard use global block as loss block
        global_block = framework.default_main_program().global_block()
        start = len(global_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
        self._create_accumulators(global_block,
                                  [p[0] for p in parameters_and_grads])
        self._create_global_learning_rate()

        optimize_ops = []
M
minqiyang 已提交
277
        if framework.in_dygraph_mode():
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad):
                    if param_and_grad[0].trainable is True:
                        optimize_op = self._append_optimize_op(global_block,
                                                               param_and_grad)
                        optimize_ops.append(optimize_op)
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
                        optimize_op = self._append_optimize_op(global_block,
                                                               param_and_grad)
                        optimize_ops.append(optimize_op)
297 298 299 300 301 302 303 304 305

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(global_block, parameters_and_grads)

        end = len(global_block.ops)
        return global_block._slice_ops(start, end)

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
306 307 308 309 310 311 312 313 314
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
315 316
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
332 333 334 335 336 337 338 339 340 341 342 343 344
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
345 346
        return new_param_grads, (table_param, table_grad), sgd_op

347 348 349
    def _append_dgc_ops(self, param_and_grad):
        pass

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
        First part of `minimize`, do auto-diff to append backward ops for
        the current program.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
M
minqiyang 已提交
368

369 370
        Return:
            list: list of (param, grad) pair, grad is the output of backward.
M
minqiyang 已提交
371

372 373 374
        Examples:
            See examples in `apply_gradients`.
        """
C
chengduo 已提交
375
        self._dtype = loss.dtype
L
lujun 已提交
376
        if framework.in_dygraph_mode():
C
chengduo 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
            if parameter_list is not None:
                parameters = parameter_list
            else:
                parameters = framework._dygraph_tracer().all_parameters()

            params_grads = []
            for param in parameters:
                if not param.trainable:
                    continue
                if param._ivar._grad_ivar() is not None:
                    # create gradient variable
                    grad_var = Variable(
                        block=loss.block,
                        name=param._ivar._grad_name(),
                        stop_gradient=True,
                        ivar=param._ivar._grad_ivar())
                    params_grads.append((param, grad_var))
394
        else:
C
chengduo 已提交
395 396 397 398 399 400 401 402 403 404 405 406
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
                                               no_grad_set, callbacks)
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads
407 408 409 410 411 412 413 414

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
415

416 417
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
418

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
        Examples:
            .. code-block:: python

                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

C
chengduo 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.
        """
L
lujun 已提交
461
        if framework.in_dygraph_mode():
C
chengduo 已提交
462 463 464 465 466 467 468 469 470
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

Q
Qiao Longfei 已提交
471 472
    def minimize(self,
                 loss,
473
                 startup_program=None,
Q
Qiao Longfei 已提交
474 475
                 parameter_list=None,
                 no_grad_set=None):
476 477 478 479 480
        """
        Add operations to minimize `loss` by updating `parameter_list`.

        This method combines interface `backward()` and
        `apply_gradients()` into one.
M
minqiyang 已提交
481

482 483 484 485 486 487
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
Q
Qiao Longfei 已提交
488

489 490 491
        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
Q
Qiao Longfei 已提交
492
        """
C
chengduo 已提交
493 494 495 496 497 498 499
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
M
minqiyang 已提交
500

501 502 503
        if framework.in_dygraph_mode():
            framework._dygraph_tracer()._clear_ops()

Q
Qiao Longfei 已提交
504
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
505 506 507


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
508 509 510 511 512 513 514 515 516 517
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
518 519 520
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
521 522 523 524

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
525
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
526
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
527 528
    """

X
Xin Pan 已提交
529
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
530
        assert learning_rate is not None
Q
Qiao Longfei 已提交
531
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
532 533 534
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
535 536
        self.type = "sgd"

537 538
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
539

Q
Qiao Longfei 已提交
540 541 542 543 544 545
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
546
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
547
            },
M
minqiyang 已提交
548 549
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
550 551

        return sgd_op
552 553 554


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

569
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
570 571 572

        & else:

Q
qiaolongfei 已提交
573
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
574 575 576 577 578 579

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
580 581 582
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
583 584 585 586

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
587
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
588
            optimizer.minimize(cost)
589 590 591
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
592 593 594 595 596 597
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
598 599
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
600
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
601 602 603
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
604 605
        self.type = "momentum"
        self._momentum = momentum
606
        self._use_nesterov = bool(use_nesterov)
607 608 609 610 611

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
612
            self._add_accumulator(self._velocity_acc_str, p)
613 614 615 616 617 618 619 620 621 622 623 624 625

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
626
                "LearningRate": self._create_param_lr(param_and_grad)
627 628 629 630 631
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
632
            attrs={"mu": self._momentum,
M
minqiyang 已提交
633 634
                   "use_nesterov": self._use_nesterov},
            stop_gradient=True)
635 636

        return momentum_op
637 638


639 640 641 642 643
class DGCMomentumOptimizer(MomentumOptimizer):
    """

    Original paper is https://arxiv.org/abs/1712.01887

G
gongweibao 已提交
644
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
645 646
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
647
    To avoid losing information, DGC accumulates the rest of the gradients locally.
648 649 650

    Eventually, these gradients become large enough to be transmitted.

G
gongweibao 已提交
651
    Thus, DGC sends the large gradients immediately but eventually send all of the gradients over time.
652

G
gongweibao 已提交
653
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
654 655 656 657

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
658

659 660
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
661

662 663 664 665 666 667
        2. Call momentum to optimize on the cost.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor.
G
gongweibao 已提交
668
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
669 670 671 672 673 674 675
        rampup_step (int): How long it use the sparsity periods. Default is 1.
            for example: If the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 5, \
                it will use 0.75 at 0 step, and 0.9375 at 1 step, and so on. And when reach sparsity array ends, \
                it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity).
        use_nesterov (bool): Enables Nesterov momentum. True means use nesterov.
        local_grad_clip_norm (float): Clip norm value if needed.
G
gongweibao 已提交
676
        num_trainers: The number of training nodes.
677
        regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
G
gongweibao 已提交
678
        name: An optional name prefix.
679 680 681 682 683

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
684 685 686 687 688
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754

    """

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
                 use_nesterov=False,
                 local_grad_clip_norm=None,
                 num_trainers=None,
                 regularization=None,
                 name=None):
        self._sparsity = sparsity
        self._rampup_step = rampup_step
        self._rampup_step_var = None

        self._rampup_begin_step = rampup_begin_step
        self._rampup_begin_step_var = None

        self._global_step_var = None
        self._local_grad_clip_norm = None
        self._clip_norm = None

        if local_grad_clip_norm is not None:
            assert isinstance(num_trainers, int)
            assert isinstance(local_grad_clip_norm, float)
            assert num_trainers > 0

            self._local_grad_clip_norm = local_grad_clip_norm
            self._num_trainers = num_trainers
            self._clip_norm = local_grad_clip_norm / (num_trainers *
                                                      num_trainers)

        super(DGCMomentumOptimizer, self).__init__(
            learning_rate, momentum, use_nesterov, regularization, name)

        core.init_dgc()

    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

    def _append_dgc_ops(self, param_and_grads):
        start_program = default_startup_program()
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
755
            counter_name=core.dgc.kDGCCounterName(), begin=0)
756 757 758 759 760 761

        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
762
            name=core.dgc.kDGCRampUpBeginStepName(),
763 764 765 766
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

        for param_var, grad_var in param_and_grads:
G
gongweibao 已提交
767
            var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
768 769 770 771 772 773 774 775 776 777
            if var_numel < 16384 or \
                param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
                grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
                    param_var.dtype != core.VarDesc.VarType.FP32 :
                continue

            u_var = tensor.create_global_var(
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
778
                name=param_var.name + core.dgc.kDGCUName(),
779 780 781 782 783
                value=0.0)
            v_var = tensor.create_global_var(
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
784
                name=param_var.name + core.dgc.kDGCVName(),
785 786 787 788 789 790
                value=0.0)

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
791
                name=param_var.name + core.dgc.kDGCKName(),
792 793 794 795 796 797 798
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
799
                name=param_var.name + core.dgc.kDGCEncodedName(),
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
                value=0.0,
                force_cpu=False)

            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
            if self._local_grad_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._clip_norm)
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
                         encoded_var)

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
            name = unique_name.generate(".".join([helper.name, 'tmp']))

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
G
gongweibao 已提交
847
            type="dgc_clip_by_norm",
848 849 850 851 852 853 854 855 856 857 858 859
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
G
gongweibao 已提交
860
                x=grad_var, max_norm=clip_norm, name=grad_var.name)
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
                encoded_var):
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
                "current_step": self._global_step_var
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
                "Grad_out": grad_var
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
                "rampup_step": float(self._rampup_step)
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])


896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        lars_coeff (float): defines how much we trust the layer to change its weights.
        lars_weight_decay (float): weight decay coefficient for decaying using LARS.
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
M
minqiyang 已提交
920

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
            optimizer.minimize(cost)
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
M
minqiyang 已提交
976 977
            },
            stop_gradient=True)
978 979 980 981

        return momentum_op


982
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
1003 1004 1005
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
X
xuezhong 已提交
1006
        initial_accumulator_value (float): Initial value for moment accumulator.
Q
qiaolongfei 已提交
1007 1008 1009 1010

    Examples:
        .. code-block:: python

1011 1012 1013 1014 1015 1016 1017 1018
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
Q
qiaolongfei 已提交
1019
            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
1020 1021 1022 1023 1024 1025 1026
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1027 1028 1029
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1030 1031 1032 1033
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
1034
                 name=None,
X
xuezhong 已提交
1035
                 initial_accumulator_value=0.0):
1036 1037
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1038
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1039 1040 1041
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1042 1043
        self.type = "adagrad"
        self._epsilon = epsilon
1044
        self.initial_accumulator_value = initial_accumulator_value
1045 1046 1047 1048 1049

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1050
            self._add_accumulator(self._moment_acc_str, p)
1051 1052 1053 1054 1055 1056

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
        startup_block = framework.default_startup_program().global_block()
        startup_block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [moment_acc]},
            attrs={
                'dtype': moment_acc.dtype,
                'value': self.initial_accumulator_value,
                'shape': moment_acc.shape,
            })
1067

1068
        # Create the adagrad optimizer op
1069 1070 1071 1072 1073 1074
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
1075
                "LearningRate": self._create_param_lr(param_and_grad)
1076 1077 1078
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1079 1080
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1081 1082

        return adagrad_op
1083 1084 1085


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
1113
        regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
X
Xin Pan 已提交
1114
        name: A optional name prefix.
1115 1116 1117 1118 1119 1120
        lazy_mode(bool: false): The official Adam algorithm has two moving-average accumulators
        the accumulators are updated at every step. Every element of the two moving-average is updated
        in both dense mode and sparse mode. If the size of parameter is very large, then the update
        may be very slow. The lazy mode only update the element that has gradient is the current
        mini-batch, so it will be much more faster. But this mode has different semantics with the
        original Adam algorithm and may lead to different result.
Q
qiaolongfei 已提交
1121 1122 1123 1124 1125 1126 1127

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

1128 1129 1130
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
1131 1132
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
1133 1134 1135 1136 1137

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1138
                 epsilon=1e-8,
X
Xin Pan 已提交
1139
                 regularization=None,
Q
Qiao Longfei 已提交
1140
                 name=None,
Q
Qiao Longfei 已提交
1141
                 lazy_mode=False):
1142 1143 1144 1145
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1146
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
1147 1148 1149
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1150 1151 1152 1153
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
1154
        self._lazy_mode = lazy_mode
1155 1156 1157 1158 1159 1160

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
1161 1162
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
1175 1176 1177 1178 1179 1180 1181 1182

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
1183 1184 1185 1186 1187
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

1188
        # create the adam optimize op
1189 1190 1191 1192 1193
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1194
                "LearningRate": self._create_param_lr(param_and_grad),
1195 1196
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
1197 1198
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
1199 1200 1201 1202 1203 1204 1205 1206 1207
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
Q
Qiao Longfei 已提交
1208
                "epsilon": self._epsilon,
1209 1210
                "lazy_mode": self._lazy_mode,
                "min_row_size_to_use_multithread": 1000
M
minqiyang 已提交
1211 1212
            },
            stop_gradient=True)
1213 1214 1215

        return adam_op

1216
    def _finish_update(self, block, param_and_grads):
1217 1218 1219
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1220
        main_block = block.program.global_block()
1221 1222 1223
        for param, grad in param_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
1224 1225
            with param.block.program._optimized_guard(
                [param, grad]), name_scope("optimizer"):
1226 1227 1228 1229 1230 1231 1232 1233
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
1234 1235
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
1236 1237 1238 1239 1240

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
M
minqiyang 已提交
1241 1242
                    attrs={"scale": self._beta2},
                    stop_gradient=True)
1243 1244 1245


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              adam = fluid.optimizer.Adamax(learning_rate=0.2)
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

Q
qiaolongfei 已提交
1297 1298 1299 1300 1301 1302
    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
1303 1304 1305
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1306

C
chengduo 已提交
1307 1308
    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
1309 1310 1311
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
1312
    _beta1_pow_acc_str = "beta1_pow_acc"
1313 1314 1315 1316 1317

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1318
                 epsilon=1e-8,
X
Xin Pan 已提交
1319 1320
                 regularization=None,
                 name=None):
1321 1322 1323 1324
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1325
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
1326 1327 1328
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1329 1330 1331 1332 1333 1334 1335 1336
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
1337 1338
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
1339 1340 1341 1342 1343 1344
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
1345 1346 1347 1348 1349 1350 1351

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
1352 1353
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
1354 1355 1356 1357 1358 1359
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1360
                "LearningRate": self._create_param_lr(param_and_grad),
1361 1362
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
1363
                "Beta1Pow": beta1_pow_acc
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
1374 1375
            },
            stop_gradient=True)
1376 1377 1378

        return adamax_op

1379
    def _finish_update(self, block, parameters_and_grads):
1380 1381 1382
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1383
        main_block = block.program.global_block()
1384 1385 1386
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
1387 1388
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
1389 1390 1391 1392 1393 1394
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
1395 1396
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
1397 1398 1399


class DecayedAdagradOptimizer(Optimizer):
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
1422 1423 1424
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1425 1426 1427 1428 1429 1430

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
1431 1432 1433

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
1434 1435 1436
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1437 1438 1439 1440 1441 1442
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
1443 1444 1445 1446
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
1447
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1448 1449 1450
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1478 1479
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1480 1481

        return decayed_adagrad_op
1482 1483


1484
class AdadeltaOptimizer(Optimizer):
1485 1486
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
1487

1488
    Simple Adadelta optimizer with average squared grad state and
1489
    average squared update state.
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
1502
        learning_rate(float): global learning rate
1503 1504
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
1505 1506 1507
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1508 1509 1510 1511 1512 1513 1514

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1515 1516 1517

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
1518
    """
1519

1520 1521 1522
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
1523 1524 1525 1526 1527 1528
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
1529 1530 1531 1532 1533 1534
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
1535
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
1536 1537 1538
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1539 1540 1541 1542 1543
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
1544 1545
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1546 1547 1548 1549 1550 1551

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
1552 1553
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
1575 1576
                   "rho": self._rho},
            stop_gradient=True)
1577 1578 1579 1580

        return adadelta_op


Q
qingqing01 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
1591
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1592 1593 1594 1595

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
1596
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
1597 1598 1599 1600 1601 1602

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
1603
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1604

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
1619 1620 1621 1622
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
1623
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
1624 1625 1626 1627 1628 1629
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
1630
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
1631 1632 1633
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
1634
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
1635
            set 0.0 by default.
1636 1637 1638 1639
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
1640 1641 1642
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1656
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1657 1658 1659 1660 1661 1662

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1663
                 centered=False,
X
Xin Pan 已提交
1664 1665
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1666
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1667 1668 1669
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1683
        self._centered = centered
Q
qingqing01 已提交
1684 1685 1686 1687 1688 1689 1690 1691

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1692
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1702 1703
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1704 1705 1706 1707 1708 1709 1710
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1711
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1712 1713 1714 1715 1716
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1717 1718
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1719 1720 1721 1722
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1723 1724
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
1725 1726
            },
            stop_gradient=True)
Q
qingqing01 已提交
1727 1728 1729 1730

        return rmsprop_op


Q
qiaolongfei 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
M
minqiyang 已提交
1773 1774 1775
        l1 (float): L1 regularization strength.
        l2 (float): L2 regularization strength.
        lr_power (float): Learning Rate Power.
X
Xin Pan 已提交
1776 1777 1778
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1779 1780 1781 1782 1783 1784 1785 1786 1787

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1788 1789 1790

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1791 1792 1793 1794 1795
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1796 1797 1798 1799 1800 1801 1802
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1803
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1804 1805 1806
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
M
minqiyang 已提交
1847 1848
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
1849 1850 1851 1852

        return ftrl_op


Y
Yibing Liu 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
class LambOptimizer(AdamOptimizer):
    """
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
    correction. For more information, please refer to `Reducing BERT Pre-Training 
    Time from 3 Days to 76 Minutes <https://arxiv.org/abs/1904.00962>`_ .

    The updating of parameters follows:

    ..  math::

	m_t^l & = \\beta_1 m_{t - 1}^l + (1 - \\beta_1)g_t^l

	v_t^l & = \\beta_2 v_{t - 1}^l + (1 - \\beta_2)g_t^l \odot g_t^l

	\\widehat{m}_t^l & = m_t^l/(1 - \\beta_1^t)

	\\widehat{v}_t^l & = v_t^l/(1 - \\beta_2^t)
	
        r_1 & = \\left \| w_{t-1}^l \\right \|_2
	
        r_2 & = \\left \|  \\frac{\\widehat{m}_t^l}{\\sqrt{\\widehat{v}_t^l+\\epsilon}} + \\lambda w_{t-1}^l \\right \|_2

	r & = r_1 / r_2

	\\eta^l & = r \\times \\eta

	w_t^l & = w_{t-1}^l -\\eta ^l \\times (\\frac{\\widehat{m}_t^l}{\\sqrt{\\widehat{v}_t^l+\\epsilon}} + \\lambda w_{t-1}^l)


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
                                        Can be a float value or a Variable with one \
                                        float value as data element.
        lamb_weight_decay (float): The LAMB weight decay rate.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): A small float value for numerical stability.
        regularization: A Regularizer, such as
                        fluid.regularizer.L1DecayRegularizer.
        name (str|None): An optional name prefix.

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

            data = fluid.layers.data(name='x', shape=[5], dtype='float32')
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002)
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name)
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

        # create the lamb optimize op
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "weight_decay": self._weight_decay
            },
            stop_gradient=True)

        return lamb_op


1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1994
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1995
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1996
Ftrl = FtrlOptimizer
1997
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
1998
Lamb = LambOptimizer
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
2014 2015 2016
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
2017
    Examples:
Q
qiaolongfei 已提交
2018 2019 2020

      .. code-block:: python

2021
        optimizer = fluid.optimizer.Momentum()
2022 2023
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
2024 2025 2026 2027 2028
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
2029 2030 2031 2032

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
2033 2034 2035
    """

    def __init__(self,
W
wanghaoshuang 已提交
2036
                 average_window_rate,
2037 2038
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
2039 2040 2041 2042
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
2043 2044 2045
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
2046

2047
        self.params_grads = []
2048 2049
        for param in framework.default_main_program().global_block(
        ).all_parameters():
2050
            if param.do_model_average != False:
2051 2052 2053 2054
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
2055
                    stop_gradient=True)
2056
                self.params_grads.append((param, grad))
2057

2058
        for param, grad in self.params_grads:
2059 2060
            if grad is None:
                continue
X
Xin Pan 已提交
2061 2062
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
2063
                self._append_average_accumulate_op(param)
2064

2065 2066 2067 2068
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
2069
                self._add_average_apply_op(block, param_grad)
2070 2071 2072 2073 2074

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
2075
                self._add_average_restore_op(block, param_grad)
2076

2077
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
2078 2079 2080 2081 2082 2083
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
2084
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
2085
        old_num_accumulates = block._clone_variable(
2086
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
2087
        num_updates = block._clone_variable(
2088 2089 2090 2091 2092 2093
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
2094 2095 2096 2097
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
2098
        ops._elementwise_div(x=sum, y=tmp, out=param)
2099 2100

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
2101 2102
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
2140 2141
            },
            stop_gradient=True)
2142

S
rename  
sneaxiy 已提交
2143
    @signature_safe_contextmanager
2144
    def apply(self, executor, need_restore=True):
2145 2146
        """Apply average values to parameters of current model.
        """
2147 2148 2149 2150 2151 2152
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
2153 2154 2155 2156

    def restore(self, executor):
        """Restore parameter values of current model.
        """
2157
        executor.run(self.restore_program)