activation_op.h 12.2 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

Q
qijun 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
template <typename Place, typename T, typename Functor>
class ActivationKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Output<framework::Tensor>("Y");
    Y->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto place = context.GetEigenDevice<Place>();
    Functor functor;
    functor(place, x, y);
  }
};

template <typename Place, typename T, typename Functor>
class ActivationGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Input<framework::Tensor>("Y");
    auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    dX->mutable_data<T>(context.GetPlace());

    auto dy = framework::EigenVector<T>::Flatten(*dY);
    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto dx = framework::EigenVector<T>::Flatten(*dX);
    auto place = context.GetEigenDevice<Place>();
    Functor functor;
    functor(place, x, y, dy, dx);
  }
};

58
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
59
template <typename T>
Q
qijun 已提交
60
struct SigmoidFunctor {
Q
qijun 已提交
61 62
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
63
    y.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
64 65 66
  }
};

67
template <typename T>
Q
qijun 已提交
68
struct SigmoidGradFunctor {
Q
qijun 已提交
69 70
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
71
    dx.device(d) = dy * y * (static_cast<T>(1) - y);
Q
qijun 已提交
72 73 74
  }
};

Q
qijun 已提交
75
// exp(x) = e^x
Q
qijun 已提交
76
struct ExpFunctor {
Q
qijun 已提交
77 78 79 80 81 82
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.exp();
  }
};

Q
qijun 已提交
83
struct ExpGradFunctor {
Q
qijun 已提交
84 85
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
Q
qijun 已提交
86
    dx.device(d) = dy * y;
Q
qijun 已提交
87 88 89
  }
};

Q
qijun 已提交
90
// relu(x) = max(x, 0)
Q
qijun 已提交
91 92 93 94 95 96 97
template <typename T>
struct ReluFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.cwiseMax(static_cast<T>(0));
  }
};
Q
qijun 已提交
98

Q
qijun 已提交
99 100 101 102 103 104 105
template <typename T>
struct ReluGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) = dy * (x > static_cast<T>(0)).template cast<T>();
  }
};
Q
qijun 已提交
106

107
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
Q
qijun 已提交
108 109 110 111 112 113 114 115 116 117 118
struct TanhFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.tanh();
  }
};

template <typename T>
struct TanhGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
119
    dx.device(d) = dy * (static_cast<T>(1) - y * y);
Q
qijun 已提交
120 121 122
  }
};

Q
qijun 已提交
123
// sqrt(x) = x^(1/2)
Q
qijun 已提交
124 125 126 127 128 129 130 131 132 133 134
struct SqrtFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.sqrt();
  }
};

template <typename T>
struct SqrtGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
135
    const Y y_conj = Eigen::numext::conj(y);
Q
qijun 已提交
136 137 138 139
    dx.device(d) = static_cast<T>(0.5) * dy / y_conj;
  }
};

Q
qijun 已提交
140 141 142 143 144 145 146 147
// abs(x) = |x|
struct AbsFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.abs();
  }
};

148 149 150 151 152 153 154
struct AbsGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) = dy * x.sign();
  }
};

Q
qijun 已提交
155 156 157 158 159
// reciprocal(x) = 1 / x
template <typename T>
struct ReciprocalFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
160
    y.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
161 162 163
  }
};

164
template <typename T>
Q
qijun 已提交
165 166 167
struct ReciprocalGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
168
    dx.device(d) = dy * static_cast<T>(-1) * y * y;
Q
qijun 已提交
169 170 171 172 173 174 175 176 177 178 179
  }
};

// log(x) = natural logarithm of x
struct LogFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.log();
  }
};

180
template <typename T>
Q
qijun 已提交
181 182 183
struct LogGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
184
    dx.device(d) = dy * (static_cast<T>(1) / x);
Q
qijun 已提交
185 186 187 188 189 190 191 192 193
  }
};

// square(x) = x^2
struct SquareFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.square();
  }
194
};
Q
qijun 已提交
195

196
template <typename T>
Q
qijun 已提交
197 198 199
struct SquareGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    dx.device(d) = dy * static_cast<T>(2) * x;
  }
};

template <typename Place, typename T, typename AttrType = T>
class BReluKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Output<framework::Tensor>("Y");
    auto t_min = static_cast<T>(context.Attr<AttrType>("t_min"));
    auto t_max = static_cast<T>(context.Attr<AttrType>("t_max"));
    Y->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto place = context.GetEigenDevice<Place>();
    y.device(place) = x.cwiseMax(t_min).cwiseMin(t_max);
  }
};

template <typename Place, typename T, typename AttrType = T>
class BReluGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto t_min = static_cast<T>(context.Attr<AttrType>("t_min"));
    auto t_max = static_cast<T>(context.Attr<AttrType>("t_max"));
    dX->mutable_data<T>(context.GetPlace());

    auto dy = framework::EigenVector<T>::Flatten(*dY);
    auto x = framework::EigenVector<T>::Flatten(*X);
    auto dx = framework::EigenVector<T>::Flatten(*dX);
    auto place = context.GetEigenDevice<Place>();

    dx.device(place) = dy * ((x > t_min) * (x < t_max)).template cast<T>();
  }
};

template <typename Place, typename T, typename AttrType = T>
class SoftReluKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Output<framework::Tensor>("Y");
    auto threshold = static_cast<T>(context.Attr<AttrType>("threshold"));
    Y->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto place = context.GetEigenDevice<Place>();
    auto temp = x.cwiseMax(-threshold).cwiseMin(threshold).eval();
    y.device(place) = (static_cast<T>(1) + temp.exp()).log();
  }
};

template <typename Place, typename T, typename AttrType = T>
class SoftReluGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Input<framework::Tensor>("Y");
    auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto threshold = static_cast<T>(context.Attr<AttrType>("threshold"));
    dX->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto dy = framework::EigenVector<T>::Flatten(*dY);
    auto dx = framework::EigenVector<T>::Flatten(*dX);
    auto place = context.GetEigenDevice<Place>();
    auto temp = ((x > -threshold) * (x < threshold)).template cast<T>().eval();
    dx.device(place) = dy * (static_cast<T>(1) - (-y).exp()) * temp;
  }
};

template <typename Place, typename T, typename AttrType = T>
class PowKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Output<framework::Tensor>("Y");
    auto factor = static_cast<T>(context.Attr<AttrType>("factor"));
    Y->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto place = context.GetEigenDevice<Place>();
    y.device(place) = x.pow(factor);
  }
};

template <typename Place, typename T, typename AttrType = T>
class PowGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto factor = static_cast<T>(context.Attr<AttrType>("factor"));
    dX->mutable_data<T>(context.GetPlace());

    auto dy = framework::EigenVector<T>::Flatten(*dY);
    auto x = framework::EigenVector<T>::Flatten(*X);
    auto dx = framework::EigenVector<T>::Flatten(*dX);
    auto place = context.GetEigenDevice<Place>();

    dx.device(place) = dy * factor * x.pow(factor - static_cast<T>(1));
  }
};

template <typename Place, typename T, typename AttrType = T>
class STanhKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Output<framework::Tensor>("Y");
    auto scale_a = static_cast<T>(context.Attr<AttrType>("scale_a"));
    auto scale_b = static_cast<T>(context.Attr<AttrType>("scale_b"));
    Y->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto place = context.GetEigenDevice<Place>();
    y.device(place) = scale_b * (scale_a * x).tanh();
  }
};

template <typename Place, typename T, typename AttrType = T>
class STanhGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto scale_a = static_cast<T>(context.Attr<AttrType>("scale_a"));
    auto scale_b = static_cast<T>(context.Attr<AttrType>("scale_b"));
    dX->mutable_data<T>(context.GetPlace());

    auto dy = framework::EigenVector<T>::Flatten(*dY);
    auto x = framework::EigenVector<T>::Flatten(*X);
    auto dx = framework::EigenVector<T>::Flatten(*dX);
    auto place = context.GetEigenDevice<Place>();

    auto temp = (scale_a * x).tanh() * (scale_a * x).tanh();
    dx.device(place) = dy * scale_a * scale_b * (static_cast<T>(1) - temp);
Q
qijun 已提交
349 350 351
  }
};

Q
qijun 已提交
352 353
}  // namespace operators
}  // namespace paddle