executor.cc 19.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
S
sneaxiy 已提交
17 18 19 20
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <utility>
Y
Yang Yang 已提交
21

Y
Yi Wang 已提交
22 23 24 25 26
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
27
#include "paddle/fluid/framework/threadpool.h"
28
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
29
#include "paddle/fluid/framework/variable_helper.h"
S
sneaxiy 已提交
30
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
31
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
32
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
33
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
34

35
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
36
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
37
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
38 39
#endif

D
dzhwinter 已提交
40
DECLARE_bool(benchmark);
41
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
42 43 44

namespace paddle {
namespace framework {
X
Xin Pan 已提交
45 46 47 48 49
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
50

S
fix bug  
sneaxiy 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
static std::unordered_map<std::string, size_t> GetNonPersistableReferenceCounts(
    const BlockDesc& block, const std::vector<std::string>& skip_var_list) {
  std::unordered_map<std::string, size_t> ref_cnts;
  std::unordered_set<std::string> skip_vars(skip_var_list.begin(),
                                            skip_var_list.end());

  auto update_ref_cnts = [&](OpDesc* op_desc, const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        if (skip_vars.count(name)) continue;
        auto* var_desc = block.FindVar(name);
        if (var_desc == nullptr || var_desc->Persistable()) continue;
        auto type = var_desc->Proto()->type().type();
        if (type != proto::VarType::LOD_TENSOR &&
            type != proto::VarType::SELECTED_ROWS &&
            type != proto::VarType::LOD_TENSOR_ARRAY) {
          continue;
        }
S
sneaxiy 已提交
69
        ++ref_cnts[name];
S
fix bug  
sneaxiy 已提交
70 71 72 73 74 75 76 77 78 79 80
      }
    }
  };

  for (auto op_desc : block.AllOps()) {
    update_ref_cnts(op_desc, op_desc->Inputs());
    update_ref_cnts(op_desc, op_desc->Outputs());
  }
  return ref_cnts;
}

Q
Qiao Longfei 已提交
81
ExecutorPrepareContext::ExecutorPrepareContext(
S
fix bug  
sneaxiy 已提交
82
    const framework::ProgramDesc& prog, size_t block_id,
S
sneaxiy 已提交
83 84 85 86 87
    const std::vector<std::string>& keep_vars, bool force_disable_gc)
    : prog_(prog), block_id_(block_id), force_disable_gc_(force_disable_gc) {
  if (GetEagerDeletionThreshold() >= 0 && !force_disable_gc_) {
    global_ref_cnts_ =
        GetNonPersistableReferenceCounts(prog.Block(block_id), keep_vars);
S
sneaxiy 已提交
88 89
  }
}
Y
Yu Yang 已提交
90

Q
Qiao Longfei 已提交
91
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
92
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
93
}
Y
Yu Yang 已提交
94

S
fix bug  
sneaxiy 已提交
95
static void DeleteUnusedTensors(
S
sneaxiy 已提交
96
    const Scope& scope, const OperatorBase* op, GarbageCollector* gc,
S
fix bug  
sneaxiy 已提交
97
    std::unordered_map<std::string, size_t>* ref_cnts) {
S
sneaxiy 已提交
98
  std::deque<std::shared_ptr<memory::Allocation>> garbages;
S
sneaxiy 已提交
99 100 101 102 103 104

  auto handler = [&](const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        auto it = ref_cnts->find(name);
        if (it == ref_cnts->end()) continue;
S
sneaxiy 已提交
105 106 107 108
        if (--(it->second) != 0) {
          continue;
        }
        auto* var = scope.FindVar(name);
S
sneaxiy 已提交
109
        if (var == nullptr) {
S
sneaxiy 已提交
110 111 112 113 114 115
          continue;
        }

        VLOG(2) << "Erase variable " << name;
        if (var->IsType<LoDTensor>()) {
          garbages.emplace_back(
S
sneaxiy 已提交
116 117 118 119 120
              var->GetMutable<LoDTensor>()->MoveMemoryHolder());
        } else if (var->IsType<SelectedRows>()) {
          garbages.emplace_back(var->GetMutable<SelectedRows>()
                                    ->mutable_value()
                                    ->MoveMemoryHolder());
S
sneaxiy 已提交
121 122 123
        } else if (var->IsType<LoDTensorArray>()) {
          auto* lod_tensor_arr = var->GetMutable<LoDTensorArray>();
          for (auto& t : *lod_tensor_arr) {
S
sneaxiy 已提交
124
            garbages.emplace_back(t.MoveMemoryHolder());
S
sneaxiy 已提交
125
          }
S
sneaxiy 已提交
126 127
        } else {
          PADDLE_THROW("Type %s of %s is not supported eager deletion",
S
sneaxiy 已提交
128
                       framework::ToTypeName(var->Type()), name);
S
sneaxiy 已提交
129 130 131 132 133 134 135 136
        }
      }
    }
  };

  handler(op->Inputs());
  handler(op->Outputs());

S
sneaxiy 已提交
137 138
  if (!garbages.empty()) {
    gc->Add(std::move(garbages));
S
sneaxiy 已提交
139 140 141
  }
}

D
dzhwinter 已提交
142
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
143

Y
Yancey1989 已提交
144
void Executor::Close() {
W
Wu Yi 已提交
145
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
146 147
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
148 149 150
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
151
#endif
Y
Yancey1989 已提交
152
}
W
Wu Yi 已提交
153

L
Liu Yiqun 已提交
154 155 156
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
157 158 159 160 161 162 163 164 165 166 167 168 169 170

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
171
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
172 173
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
174 175
      } else {
        auto* ptr = scope->Var(var->Name());
176
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
177 178
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
179 180 181 182 183
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
184
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
185 186
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
187 188 189 190
    }
  }
}

Y
Yu Yang 已提交
191
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
192 193 194
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
                   bool force_disable_gc) {
X
Xin Pan 已提交
195
  platform::RecordBlock b(block_id);
196
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
S
sneaxiy 已提交
197
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
Q
Qiao Longfei 已提交
198
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
199 200
}

201 202 203 204 205 206 207
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
208
    const BlockDesc& block,
L
Liu Yiqun 已提交
209
    const std::map<std::string, const LoDTensor*>& feed_targets,
210 211
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
212
  for (auto* op : block.AllOps()) {
213 214
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
215
      // The input variable's name of feed_op should be feed_holder_name.
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

231
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
232
      // When feed operator are present, so should be feed_holder.
233 234 235 236 237 238 239
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
240 241 242 243 244 245 246 247 248 249 250 251
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
252 253
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
254 255
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
256
  for (auto* op : block.AllOps()) {
257 258
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
259
      // The output variable's name of fetch_op should be fetch_holder_name.
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

275
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
276
      // When fetch operator are present, so should be fetch_holder.
277 278 279 280 281 282 283
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
284 285 286 287 288 289
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
290 291
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
292 293
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
294
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
295
  platform::RecordBlock b(kProgramId);
296
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
297
  bool has_feed_ops =
298
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
299
  bool has_fetch_ops =
300
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
301 302

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
303
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
304
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
305 306
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
307
  }
308 309
  auto* global_block = copy_program->MutableBlock(0);

310
  if (!has_feed_ops) {
311 312
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
313
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
314 315 316
    feed_holder->SetPersistable(true);

    int i = 0;
317
    for (auto& feed_target : (*feed_targets)) {
318
      std::string var_name = feed_target.first;
M
minqiyang 已提交
319
      VLOG(3) << "feed target's name: " << var_name;
320 321 322 323 324 325 326 327 328 329 330 331 332

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

333
  if (!has_fetch_ops) {
334 335
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
336
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
337 338 339
    fetch_holder->SetPersistable(true);

    int i = 0;
340
    for (auto& fetch_target : (*fetch_targets)) {
341
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
342
      VLOG(3) << "fetch target's name: " << var_name;
343 344 345 346 347 348 349 350 351 352 353 354 355

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

356
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
357 358 359
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
360 361
}

Q
Qiao Longfei 已提交
362
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
363
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
364 365 366
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
  std::unique_ptr<ExecutorPrepareContext> ctx(new ExecutorPrepareContext(
      program, block_id, skip_ref_cnt_vars, force_disable_gc));
Y
Yu Yang 已提交
367 368 369 370 371
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
372 373 374 375 376 377
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph) {
    paddle::operators::NgraphEngine::FuseNgraphOps(
        ctx->prog_.Block(ctx->block_id_), &ctx->ops_);
  }
#endif
Q
Qiyang Min 已提交
378
  return ctx;
Y
Yu Yang 已提交
379 380
}

T
refine  
typhoonzero 已提交
381
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
382
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
383 384
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
S
fix bug  
sneaxiy 已提交
385 386 387 388
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
389
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
390
  size_t idx = 0;
T
typhoonzero 已提交
391
  for (auto& bid : block_ids) {
S
fix bug  
sneaxiy 已提交
392 393
    ExecutorPrepareContext* ctx;
    if (skip_ref_cnt_vars.empty()) {
S
sneaxiy 已提交
394 395
      ctx = new ExecutorPrepareContext(program, bid, std::vector<std::string>(),
                                       force_disable_gc);
S
fix bug  
sneaxiy 已提交
396
    } else {
S
sneaxiy 已提交
397 398
      ctx = new ExecutorPrepareContext(program, bid, skip_ref_cnt_vars[idx],
                                       force_disable_gc);
S
fix bug  
sneaxiy 已提交
399
    }
T
typhoonzero 已提交
400 401 402 403 404 405
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
406
    ++idx;
T
typhoonzero 已提交
407 408 409 410
  }
  return result;
}

Y
Yu Yang 已提交
411
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
412 413
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
414
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
415 416 417 418
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
419 420
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
421
  }
Y
Yu Yang 已提交
422

S
sneaxiy 已提交
423
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
424
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
425 426 427
  // FIXME(zjl): recurrent_op is rather complex, we would
  // disable gc forcely in recurrent_op
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
428
    ctx->ResetReferenceCount();
S
sneaxiy 已提交
429 430
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
431
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
432
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
433 434
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
435
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
436 437 438
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
439
#endif
S
sneaxiy 已提交
440 441
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
442 443 444
#ifdef PADDLE_WITH_CUDA
    }
#endif
S
sneaxiy 已提交
445 446
    // If gc is enabled and block size > 1
    if (gc && ctx->prog_.Size() > 1) {
S
sneaxiy 已提交
447 448 449
      operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(ctx->block_id_,
                                                                 ctx->ops_);
    }
S
sneaxiy 已提交
450 451
  }

Y
Yu Yang 已提交
452
  for (auto& op : ctx->ops_) {
453
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
454

S
fix bug  
sneaxiy 已提交
455
    if (gc) {
S
sneaxiy 已提交
456
      DeleteUnusedTensors(*local_scope, op.get(), gc.get(),
S
sneaxiy 已提交
457
                          &(ctx->runtime_ref_cnts_));
S
sneaxiy 已提交
458
    }
Y
Yu Yang 已提交
459
  }
S
sneaxiy 已提交
460

S
fix bug  
sneaxiy 已提交
461
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
462

Q
qiaolongfei 已提交
463
  if (local_scope != scope) {
Y
Yu Yang 已提交
464
    scope->DeleteScope(local_scope);
465
  } else {
Q
qiaolongfei 已提交
466 467 468 469 470
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
471 472
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
473 474
      scope->DropKids();
    }
Y
Yu Yang 已提交
475 476 477
  }
}

478 479
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
480
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
481 482 483
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
484 485
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

486
  PADDLE_ENFORCE(
487
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
488 489
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
490
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
491 492
      "Program in the prepared context should has fetch_ops.");

493 494 495 496 497
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
498 499
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
500 501 502
    }
  }

W
Wu Yi 已提交
503
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
504 505 506 507 508 509

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
510
      *(*fetch_targets)[fetch_target_name] =
511 512 513 514 515
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

516 517
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
518
  VLOG(3) << "use_mkldnn=True";
519 520 521 522 523 524 525 526
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
527 528 529
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
530 531
#endif
}
Q
qijun 已提交
532 533
}  // namespace framework
}  // namespace paddle