pybind.cc 23.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16 17 18 19 20 21
#include <algorithm>
#include <map>
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
22

23
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
24 25 26 27 28 29 30
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/init.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
D
dzhwinter 已提交
36
#include "paddle/fluid/operators/activation_op.h"
Y
Yi Wang 已提交
37 38 39 40 41
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
42 43
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
44
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
46

47
#include "paddle/fluid/string/to_string.h"
48

D
Dong Zhihong 已提交
49
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
50 51 52
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
53 54
#endif

Q
Qiao Longfei 已提交
55 56 57
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

58
namespace paddle {
59
namespace pybind {
60
bool IsCompiledWithCUDA() {
61
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
62 63 64 65 66 67
  return false;
#else
  return true;
#endif
}

68 69
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
70

71 72 73 74
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

75
  BindException(&m);
Y
Yu Yang 已提交
76

77 78 79
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
80
      .def("get_dims",
81
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
82
      .def("set_dims",
Q
qijun 已提交
83
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
84
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
85
           })
D
dzhwinter 已提交
86 87 88 89
      .def("set_layout",
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
Yu Yang 已提交
90
      .def("alloc_float",
D
dzhwinter 已提交
91
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
92
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
93
           })
Q
qijun 已提交
94
      .def("alloc_float",
Y
Yu Yang 已提交
95
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
96
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
97 98
           })
      .def("alloc_int",
Y
Yu Yang 已提交
99
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
100
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
101
           })
Q
qijun 已提交
102
      .def("alloc_int",
D
dzhwinter 已提交
103
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
104
             self.mutable_data<int>(place);
Q
qijun 已提交
105
           })
C
chengduoZH 已提交
106 107 108 109 110 111 112 113
      .def("alloc_int",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
      .def("alloc_float",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
114 115
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
116
      .def("set", PyCPUTensorSetFromArray<double>)
117
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
118
      .def("set", PyCPUTensorSetFromArray<bool>)
119
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
120
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
121
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
122 123
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
124
      .def("set", PyCUDATensorSetFromArray<double>)
125
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
126
      .def("set", PyCUDATensorSetFromArray<bool>)
127
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
128
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
C
chengduoZH 已提交
129 130 131 132 133 134
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
135
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qijun 已提交
136
#endif
137
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
138 139 140 141 142
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
143

144
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
145 146
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
147 148 149
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
D
dzhwinter 已提交
150 151 152 153
            LoD new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            new (&instance) LoDTensor(new_lod);
154
          })
Y
Yu Yang 已提交
155
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
156
      .def("set_lod",
157
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
Y
Yu Yang 已提交
158
             LoD new_lod;
159 160 161
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
D
dangqingqing 已提交
162
           })
163
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
D
dzhwinter 已提交
164 165 166 167 168
        auto lod = self.lod();
        std::vector<std::vector<size_t>> new_lod;
        new_lod.reserve(lod.size());
        std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
        return new_lod;
D
dangqingqing 已提交
169 170
      });

Q
qijun 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
184 185 186 187 188 189 190 191 192
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
193 194 195 196 197 198 199 200 201 202 203
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
204

205
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
206 207 208

All parameter, weight, gradient are variables in Paddle.
)DOC")
209
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
210
      .def("set_int",
211 212
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
213 214 215 216 217 218 219
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
220
      .def("get_tensor",
221 222
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
223 224
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
225 226 227
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
228 229 230 231 232
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
233 234 235
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
236 237 238 239 240 241 242
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Refine  
Yu Yang 已提交
243 244 245 246 247
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
248
           py::return_value_policy::reference);
249

Y
Refine  
Yu Yang 已提交
250 251 252
  py::class_<framework::ReaderHolder>(m, "Reader", "")
      .def("reset", &framework::ReaderHolder::ReInit);

253
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
254
      .def("var",
255
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
256
             return self.Var(name);
Y
Yu Yang 已提交
257
           },
258
           py::return_value_policy::reference)
259
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
260
      .def(py::init<>())
261
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
262
           py::return_value_policy::reference)
Y
Yu Yang 已提交
263
      .def("drop_kids", &Scope::DropKids);
264

Y
Yu Yang 已提交
265 266
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
267 268
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
269 270 271 272 273 274 275 276 277 278
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
279 280
    return ret_values;
  });
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
297
  m.def("prune", [](const ProgramDesc &origin,
298
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
299
    ProgramDesc prog_with_targets(origin);
300
    for (const auto &t : targets) {
301
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
302
    }
303
    proto::ProgramDesc pruned_desc;
304
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
305
    return new ProgramDesc(pruned_desc);
306
  });
Y
Yu Yang 已提交
307
  m.def("inference_optimize", [](ProgramDesc &origin) {
308
    proto::ProgramDesc pruned_desc;
309
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
Y
Yu Yang 已提交
310
    return new ProgramDesc(pruned_desc);
311
  });
F
fengjiayi 已提交
312 313
  m.def("empty_var_name", []() { return framework::kEmptyVarName; });
  m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; });
314 315 316
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
317 318
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
319
  // clang-format off
Y
Yu Yang 已提交
320
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
321 322
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
323
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
324 325 326
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
327
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
328
                      -> paddle::platform::DeviceContext* {
329
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
330
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
331
#else
Q
qijun 已提交
332
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
333
#endif
C
chengduoZH 已提交
334 335 336 337 338 339 340 341 342 343 344
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
345 346 347 348
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
349
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
350
      .def(py::init<int>())
D
dzhwinter 已提交
351
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
352

353 354 355
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
356

C
chengduoZH 已提交
357 358 359 360
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
361 362 363 364 365 366 367
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
368
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
369
             self = gpu_place;
C
chengduoZH 已提交
370 371
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
372 373
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
374
      });
Y
Yu Yang 已提交
375

Y
Yu Yang 已提交
376 377 378
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
379
                    proto::OpDesc desc;
Y
Yu Yang 已提交
380 381 382 383 384
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
385
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
386
                  })
387
      .def("run",
388
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
389 390 391
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
392
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
393 394 395 396 397
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
398 399 400 401 402 403 404
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
405 406
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
407
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
408
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
409 410 411 412
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
413

F
fengjiayi 已提交
414
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
415
      .def(py::init<const platform::Place &>())
416 417 418
      .def("run",
           (void (Executor::*)(const ProgramDesc &, Scope *, int, bool, bool)) &
               Executor::Run);
F
fengjiayi 已提交
419

D
dzhwinter 已提交
420
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
421
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
422 423
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
424

425
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
426 427 428 429 430 431
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
432

433
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
434
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
435

436 437 438 439 440
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
441

Y
Yu Yang 已提交
442 443 444 445 446 447 448 449 450
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
468 469 470
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
471
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
472
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
473
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
474 475 476 477

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
478
#endif
Y
Yu Yang 已提交
479

480 481 482 483
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
484
      .value("kAll", platform::ProfilerState::kAll)
485 486 487 488 489 490 491 492 493 494 495 496 497
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
498
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
499
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
500

Y
yuyang18 已提交
501
  // -- python binds for parallel executor.
Y
yuyang18 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
  py::class_<ExecutionStrategy>(pe, "ExecutionStrategy")
      .def(py::init())
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
          })
      .def_property(
          "use_event",
          [](const ExecutionStrategy &self) { return self.use_event_; },
          [](ExecutionStrategy &self, bool use_event) {
            self.use_event_ = use_event;
          })
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
          });
Y
yuyang18 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy");

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
            self.reduce_ = strategy;
          })
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
            self.gradient_scale_ = strategy;
          });
Y
yuyang18 已提交
549 550 551 552

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
553
                  const std::string &, Scope *, std::vector<Scope *> &,
554 555
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
T
typhoonzero 已提交
556
      .def("bcast_params", &ParallelExecutor::BCastParamsToGPUs)
Y
Yu Yang 已提交
557 558 559 560
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
561 562 563 564 565
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
566 567 568 569
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
Y
Yu Yang 已提交
570
      .def("run", &ParallelExecutor::Run);
Y
Yu Yang 已提交
571

572
  BindRecordIOWriter(&m);
573
  return m.ptr();
L
Luo Tao 已提交
574
}
575
}  // namespace pybind
576
}  // namespace paddle