docker_install_en.rst 7.3 KB
Newer Older
Y
Yi Wang 已提交
1 2
PaddlePaddle in Docker Containers
=================================
3

Y
Yi Wang 已提交
4 5 6 7 8 9
Docker container is currently the only officially-supported way to
running PaddlePaddle.  This is reasonable as Docker now runs on all
major operating systems including Linux, Mac OS X, and Windows.
Please be aware that you will need to change `Dockers settings
<https://github.com/PaddlePaddle/Paddle/issues/627>`_ to make full use
of your hardware resource on Mac OS X and Windows.
10 11


L
liaogang 已提交
12 13
Usage of CPU-only and GPU Images
----------------------------------
14

Y
yi.wu 已提交
15 16
For each version of PaddlePaddle, we release 2 types of Docker images: development
image and production image. Production image includes CPU-only version and a CUDA
Y
update  
yi.wu 已提交
17 18 19 20 21
GPU version and their no-AVX versions. We put the docker images on
`dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_. You can find the
latest versions under "tags" tab at dockerhub.com.
1. development image :code:`paddlepaddle/paddle:<version>-dev`

Y
yi.wu 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
    This image has packed related develop tools and runtime environment. Users and
    developers can use this image instead of their own local computer to accomplish
    development, build, releasing, document writing etc. While different version of
    paddle may depends on different version of libraries and tools, if you want to
    setup a local environment, you must pay attention to the versions.
    The development image contains:
    - gcc/clang
    - nvcc
    - Python
    - sphinx
    - woboq
    - sshd
    Many developers use servers with GPUs, they can use ssh to login to the server
    and run :code:`docker exec` to enter the docker container and start their work.
    Also they can start a development docker image with SSHD service, so they can login to
    the container and start work.
38

Y
yi.wu 已提交
39
    To run the CPU-only image as an interactive container:
40

Y
yi.wu 已提交
41
    .. code-block:: bash
42

Y
yi.wu 已提交
43
        docker run -it --rm paddledev/paddle:<version> /bin/bash
44

Y
yi.wu 已提交
45
    or, we can run it as a daemon container
46

Y
yi.wu 已提交
47
    .. code-block:: bash
48

Y
yi.wu 已提交
49
        docker run -d -p 2202:22 -p 8888:8888 paddledev/paddle:<version>
50

Y
yi.wu 已提交
51
    and SSH to this container using password :code:`root`:
52

Y
yi.wu 已提交
53
    .. code-block:: bash
54

Y
yi.wu 已提交
55
        ssh -p 2202 root@localhost
56

Y
yi.wu 已提交
57 58 59 60 61
    An advantage of using SSH is that we can connect to PaddlePaddle from
    more than one terminals.  For example, one terminal running vi and
    another one running Python interpreter.  Another advantage is that we
    can run the PaddlePaddle container on a remote server and SSH to it
    from a laptop.
62 63


Y
yi.wu 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
2. Production images, this image might have multiple variants:
    - GPU/AVX::code:`paddlepaddle/paddle:<version>-gpu`
    - GPU/no-AVX::code:`paddlepaddle/paddle:<version>-gpu-noavx`
    - CPU/AVX::code:`paddlepaddle/paddle:<version>`
    - CPU/no-AVX::code:`paddlepaddle/paddle:<version>-noavx`

    Please be aware that the CPU-only and the GPU images both use the AVX
    instruction set, but old computers produced before 2008 do not support
    AVX.  The following command checks if your Linux computer supports
    AVX:

    .. code-block:: bash

       if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi


       If it doesn't, we will use the non-AVX images.

    Notice please don't forget
    to install CUDA driver and let Docker knows about it:

    .. code-block:: bash

        export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
        export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
        docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:<version>-gpu


3. Use production image to release you AI application
    Suppose that we have a simple application program in :code:`a.py`, we can test and run it using the production image:

    ```bash
    docker run -it -v $PWD:/work paddle /work/a.py
    ```
98

Y
yi.wu 已提交
99
    But this works only if all dependencies of :code:`a.py` are in the production image. If this is not the case, we need to build a new Docker image from the production image and with more dependencies installs.
100 101 102 103 104 105 106 107 108


PaddlePaddle Book
------------------

The Jupyter Notebook is an open-source web application that allows
you to create and share documents that contain live code, equations,
visualizations and explanatory text in a single browser.

Y
yi.wu 已提交
109
PaddlePaddle Book is an interactive Jupyter Notebook for users and developers.
110 111 112
We already exposed port 8888 for this book. If you want to
dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.

Y
yi.wu 已提交
113
We provide a packaged book image, simply issue the command:
114 115

.. code-block:: bash
Y
yi.wu 已提交
116

Y
update  
yi.wu 已提交
117
    docker run -p 8888:8888 paddlepaddle/book
118 119

Then, you would back and paste the address into the local browser:
Y
yi.wu 已提交
120

121 122 123 124 125 126
.. code-block:: text

    http://localhost:8888/

That's all. Enjoy your journey!

127 128 129
Development Using Docker
------------------------

D
dayhaha 已提交
130
Developers can work on PaddlePaddle using Docker.  This allows
131 132 133
developers to work on different platforms -- Linux, Mac OS X, and
Windows -- in a consistent way.

Y
yi.wu 已提交
134
1. Build the Development Docker Image
135 136 137

   .. code-block:: bash

王益 已提交
138 139
      git clone --recursive https://github.com/PaddlePaddle/Paddle
      cd Paddle
Y
yi.wu 已提交
140
      docker build -t paddle:dev .
D
dayhaha 已提交
141

王益 已提交
142
   Note that by default :code:`docker build` wouldn't import source
Y
update  
yi.wu 已提交
143 144
   tree into the image and build it.  If we want to do that, we need docker the
   development docker image and then run the following command:
145 146 147

   .. code-block:: bash

Y
yi.wu 已提交
148
      docker run -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "TEST=OFF" paddle:dev
149 150


王益 已提交
151
2. Run the Development Environment
152

王益 已提交
153 154 155
   Once we got the image :code:`paddle:dev`, we can use it to develop
   Paddle by mounting the local source code tree into a container that
   runs the image:
156 157

   .. code-block:: bash
王益 已提交
158

Y
yi.wu 已提交
159
      docker run -d -p 2202:22 -p 8888:8888 -v $PWD:/paddle paddle:dev sshd
160

王益 已提交
161 162 163
   This runs a container of the development environment Docker image
   with the local source tree mounted to :code:`/paddle` of the
   container.
164

Y
yi.wu 已提交
165
   The above :code:`docker run` commands actually starts
王益 已提交
166 167
   an SSHD server listening on port 2202.  This allows us to log into
   this container with:
168

王益 已提交
169
   .. code-block:: bash
王益 已提交
170

王益 已提交
171
      ssh root@localhost -p 2202
王益 已提交
172 173 174

   Usually, I run above commands on my Mac.  I can also run them on a
   GPU server :code:`xxx.yyy.zzz.www` and ssh from my Mac to it:
175 176

   .. code-block:: bash
王益 已提交
177

王益 已提交
178
      my-mac$ ssh root@xxx.yyy.zzz.www -p 2202
179

王益 已提交
180
3. Build and Install Using the Development Environment
181

王益 已提交
182 183 184
   Once I am in the container, I can use
   :code:`paddle/scripts/docker/build.sh` to build, install, and test
   Paddle:
185 186

   .. code-block:: bash
王益 已提交
187

王益 已提交
188
      /paddle/paddle/scripts/docker/build.sh
189

王益 已提交
190 191 192 193
   This builds everything about Paddle in :code:`/paddle/build`.  And
   we can run unit tests there:

   .. code-block:: bash
王益 已提交
194

王益 已提交
195 196
      cd /paddle/build
      ctest
197

198 199 200 201 202 203 204 205 206 207

Documentation
-------------

Paddle Docker images include an HTML version of C++ source code
generated using `woboq code browser
<https://github.com/woboq/woboq_codebrowser>`_.  This makes it easy
for users to browse and understand the C++ source code.

As long as we give the Paddle Docker container a name, we can run an
D
dayhaha 已提交
208
additional Nginx Docker container to serve the volume from the Paddle
209 210 211 212
container:

.. code-block:: bash

Y
yi.wu 已提交
213
   docker run -d --name paddle-cpu-doc paddle:<version>
214 215 216 217 218
   docker run -d --volumes-from paddle-cpu-doc -p 8088:80 nginx


Then we can direct our Web browser to the HTML version of source code
at http://localhost:8088/paddle/