communicator.cc 4.9 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/distributed/communicator.h"

#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/distributed/parameter_recv.h"
#include "paddle/fluid/operators/distributed/parameter_send.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"

namespace paddle {
namespace operators {
namespace distributed {

Q
Qiao Longfei 已提交
28 29 30
static inline void MergeVars(const std::string &var_name,
                             const std::vector<std::shared_ptr<Variable>> &vars,
                             Scope *scope) {
Q
Qiao Longfei 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
  PADDLE_ENFORCE(!vars.empty(), "should have value to merge!");
  auto cpu_place = platform::CPUPlace();
  auto &var0 = vars[0];
  auto *out_var = scope->Var(var_name);
  if (var0->IsType<framework::LoDTensor>()) {
    auto *out_t = out_var->GetMutable<framework::LoDTensor>();
    auto *out_ptr = out_t->mutable_data<float>(
        var0->Get<framework::LoDTensor>().dims(), cpu_place);
    auto numel = out_t->numel();
    for (auto i = 0; i < numel; ++i) {
      out_ptr[i] = 0;
      for (auto &var : vars) {
        auto &var_t = var->Get<framework::LoDTensor>();
        PADDLE_ENFORCE_EQ(var_t.numel(), numel, "should have the same dims");
        out_ptr[i] += var_t.data<float>()[i];
      }
    }
  } else if (var0->IsType<framework::SelectedRows>()) {
    auto *out_slr = out_var->GetMutable<framework::SelectedRows>();
    std::vector<const paddle::framework::SelectedRows *> inputs;
    inputs.reserve(vars.size());
    for (auto &var : vars) {
      inputs.push_back(&var->Get<framework::SelectedRows>());
    }
    math::scatter::MergeAdd<paddle::platform::CPUDeviceContext, float>
        merge_add;
    auto dev_ctx = paddle::platform::CPUDeviceContext();
    merge_add(dev_ctx, inputs, out_slr, false);
  } else {
    PADDLE_THROW("unsupported var type!");
  }
}

void Communicator::SendThread() {
Q
Qiao Longfei 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
  while (running_) {
    std::vector<std::future<void>> task_futures;
    task_futures.reserve(send_varname_to_ctx_.size());
    for (auto &iter : send_varname_to_queue_) {
      auto send_task = [this, &iter] {
        auto &var_name = iter.first;
        VLOG(3) << "merge var " << var_name << " and send";
        auto &var_queue = iter.second;
        std::vector<std::shared_ptr<Variable>> vars;
        const size_t max_merge_var_num = 20;
        size_t merged_var_num = 0;
        while (var_queue->Size() > 0 && merged_var_num < max_merge_var_num) {
          vars.push_back(var_queue->Pop());
          merged_var_num++;
        }
        MergeVars(var_name, vars, send_scope_.get());
        auto send_functor = distributed::ParameterSend<float>();
        auto &ctx = send_varname_to_ctx_.at(var_name);
        send_functor(ctx, *send_scope_, true);
      };
      task_futures.emplace_back(
          send_threadpool_->enqueue(std::move(send_task)));
    }
    for (auto &task_f : task_futures) {
      task_f.wait();
Q
Qiao Longfei 已提交
90 91 92 93 94
    }
  }
}

void Communicator::RecvThread() {
Q
Qiao Longfei 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  while (running_) {
    // parallel run recv graph
    std::vector<std::future<void>> task_futures;
    task_futures.reserve(recv_varname_to_ctx_.size());
    for (auto &iter : recv_varname_to_ctx_) {
      auto recv_task = [this, &iter] {
        auto &var_name = iter.first;
        VLOG(3) << "recv var " << var_name;
        auto recv_functor = distributed::ParameterRecv<float>();
        recv_functor(iter.second, *recv_scope_);
      };
      task_futures.emplace_back(
          recv_threadpool_->enqueue(std::move(recv_task)));
    }
    for (auto &task : task_futures) {
      task.wait();
    }
Q
Qiao Longfei 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125
  }
}

void Communicator::Send(const std::string &var_name,
                        const framework::Scope &scope) {
  // push var into send queue by var_name
  auto *grad_var = scope.FindVar(var_name);
  PADDLE_ENFORCE(grad_var->IsInitialized(), "grad var should be inited");
  auto tmp_grad_var = std::make_shared<Variable>();
  framework::CopyVariable(*grad_var, tmp_grad_var.get());
  send_varname_to_queue_[var_name]->Push(tmp_grad_var);
}

void Communicator::Start() {
Q
Qiao Longfei 已提交
126
  running_ = true;
Q
Qiao Longfei 已提交
127 128 129 130 131 132 133 134 135 136
  // start send and recv thread
  send_thread_.reset(
      new std::thread(std::bind(&Communicator::SendThread, this)));
  recv_thread_.reset(
      new std::thread(std::bind(&Communicator::RecvThread, this)));
}

}  // namespace distributed
}  // namespace operators
}  // namespace paddle