target_layer.py 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import paddle

from ppdet.core.workspace import register, serializable

from .target import rpn_anchor_target, generate_proposal_target, generate_mask_target


@register
@serializable
class RPNTargetAssign(object):
W
wangguanzhong 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    """
    RPN targets assignment module

    The assignment consists of three steps:
        1. Match anchor and ground-truth box, label the anchor with foreground
           or background sample
        2. Sample anchors to keep the properly ratio between foreground and 
           background
        3. Generate the targets for classification and regression branch


    Args:
        batch_size_per_im (int): Total number of RPN samples per image. 
            default 256
        fg_fraction (float): Fraction of anchors that is labeled
            foreground, default 0.5
        positive_overlap (float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be 
            a foreground sample. default 0.7
        negative_overlap (float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be 
            a background sample. default 0.3
        use_random (bool): Use random sampling to choose foreground and 
            background boxes, default true.
    """

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    def __init__(self,
                 batch_size_per_im=256,
                 fg_fraction=0.5,
                 positive_overlap=0.7,
                 negative_overlap=0.3,
                 use_random=True):
        super(RPNTargetAssign, self).__init__()
        self.batch_size_per_im = batch_size_per_im
        self.fg_fraction = fg_fraction
        self.positive_overlap = positive_overlap
        self.negative_overlap = negative_overlap
        self.use_random = use_random

    def __call__(self, inputs, anchors):
        """
        inputs: ground-truth instances.
        anchor_box (Tensor): [num_anchors, 4], num_anchors are all anchors in all feature maps.
        """
        gt_boxes = inputs['gt_bbox']
70
        batch_size = len(gt_boxes)
71 72 73 74 75 76 77 78 79 80 81 82
        tgt_labels, tgt_bboxes, tgt_deltas = rpn_anchor_target(
            anchors, gt_boxes, self.batch_size_per_im, self.positive_overlap,
            self.negative_overlap, self.fg_fraction, self.use_random,
            batch_size)
        norm = self.batch_size_per_im * batch_size

        return tgt_labels, tgt_bboxes, tgt_deltas, norm


@register
class BBoxAssigner(object):
    __shared__ = ['num_classes']
W
wangguanzhong 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    """
    RCNN targets assignment module

    The assignment consists of three steps:
        1. Match RoIs and ground-truth box, label the RoIs with foreground
           or background sample
        2. Sample anchors to keep the properly ratio between foreground and 
           background
        3. Generate the targets for classification and regression branch

    Args:
        batch_size_per_im (int): Total number of RoIs per image. 
            default 512 
        fg_fraction (float): Fraction of RoIs that is labeled
            foreground, default 0.25
        positive_overlap (float): Minimum overlap required between a RoI
            and ground-truth box for the (roi, gt box) pair to be 
            a foreground sample. default 0.5
        negative_overlap (float): Maximum overlap allowed between a RoI 
            and ground-truth box for the (roi, gt box) pair to be 
            a background sample. default 0.5
        use_random (bool): Use random sampling to choose foreground and 
            background boxes, default true
        cascade_iou (list[iou]): The list of overlap to select foreground and 
            background of each stage, which is only used In Cascade RCNN.
        num_classes (int): The number of class.
    """
110 111 112 113

    def __init__(self,
                 batch_size_per_im=512,
                 fg_fraction=.25,
W
wangguanzhong 已提交
114 115
                 fg_thresh=.5,
                 bg_thresh=.5,
116
                 use_random=True,
W
wangguanzhong 已提交
117
                 cascade_iou=[0.5, 0.6, 0.7],
118 119 120 121 122 123 124
                 num_classes=80):
        super(BBoxAssigner, self).__init__()
        self.batch_size_per_im = batch_size_per_im
        self.fg_fraction = fg_fraction
        self.fg_thresh = fg_thresh
        self.bg_thresh = bg_thresh
        self.use_random = use_random
W
wangguanzhong 已提交
125
        self.cascade_iou = cascade_iou
126 127 128 129 130 131 132
        self.num_classes = num_classes

    def __call__(self,
                 rpn_rois,
                 rpn_rois_num,
                 inputs,
                 stage=0,
W
wangguanzhong 已提交
133
                 is_cascade=False):
134 135 136
        gt_classes = inputs['gt_class']
        gt_boxes = inputs['gt_bbox']
        # rois, tgt_labels, tgt_bboxes, tgt_gt_inds
W
wangguanzhong 已提交
137
        # new_rois_num
138 139
        outs = generate_proposal_target(
            rpn_rois, gt_classes, gt_boxes, self.batch_size_per_im,
W
wangguanzhong 已提交
140 141
            self.fg_fraction, self.fg_thresh, self.bg_thresh, self.num_classes,
            self.use_random, is_cascade, self.cascade_iou[stage])
142
        rois = outs[0]
W
wangguanzhong 已提交
143
        rois_num = outs[-1]
144 145
        # tgt_labels, tgt_bboxes, tgt_gt_inds
        targets = outs[1:4]
W
wangguanzhong 已提交
146
        return rois, rois_num, targets
147 148 149 150 151 152


@register
@serializable
class MaskAssigner(object):
    __shared__ = ['num_classes', 'mask_resolution']
W
wangguanzhong 已提交
153 154 155 156 157 158 159 160 161 162 163 164
    """
    Mask targets assignment module

    The assignment consists of three steps:
        1. Select RoIs labels with foreground.
        2. Encode the RoIs and corresponding gt polygons to generate 
           mask target

    Args:
        num_classes (int): The number of class
        mask_resolution (int): The resolution of mask target, default 14
    """
165 166 167 168 169 170 171 172 173 174 175 176 177 178

    def __init__(self, num_classes=80, mask_resolution=14):
        super(MaskAssigner, self).__init__()
        self.num_classes = num_classes
        self.mask_resolution = mask_resolution

    def __call__(self, rois, tgt_labels, tgt_gt_inds, inputs):
        gt_segms = inputs['gt_poly']

        outs = generate_mask_target(gt_segms, rois, tgt_labels, tgt_gt_inds,
                                    self.num_classes, self.mask_resolution)

        # mask_rois, mask_rois_num, tgt_classes, tgt_masks, mask_index, tgt_weights
        return outs