rtdetr_transformer.py 21.9 KB
Newer Older
W
Wenyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modified from Deformable-DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Modified from detrex (https://github.com/IDEA-Research/detrex)
# Copyright 2022 The IDEA Authors. All rights reserved.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay

from ppdet.core.workspace import register
from ..layers import MultiHeadAttention
from ..heads.detr_head import MLP
from .deformable_transformer import MSDeformableAttention
from ..initializer import (linear_init_, constant_, xavier_uniform_, normal_,
                           bias_init_with_prob)
from .utils import (_get_clones, get_sine_pos_embed,
                    get_contrastive_denoising_training_group, inverse_sigmoid)

__all__ = ['RTDETRTransformer']


class PPMSDeformableAttention(MSDeformableAttention):
    def forward(self,
                query,
                reference_points,
                value,
                value_spatial_shapes,
                value_level_start_index,
                value_mask=None):
        """
        Args:
            query (Tensor): [bs, query_length, C]
            reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
                bottom-right (1, 1), including padding area
            value (Tensor): [bs, value_length, C]
            value_spatial_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
            value_level_start_index (List): [n_levels], [0, H_0*W_0, H_0*W_0+H_1*W_1, ...]
            value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements

        Returns:
            output (Tensor): [bs, Length_{query}, C]
        """
        bs, Len_q = query.shape[:2]
        Len_v = value.shape[1]

        value = self.value_proj(value)
        if value_mask is not None:
            value_mask = value_mask.astype(value.dtype).unsqueeze(-1)
            value *= value_mask
        value = value.reshape([bs, Len_v, self.num_heads, self.head_dim])

        sampling_offsets = self.sampling_offsets(query).reshape(
            [bs, Len_q, self.num_heads, self.num_levels, self.num_points, 2])
        attention_weights = self.attention_weights(query).reshape(
            [bs, Len_q, self.num_heads, self.num_levels * self.num_points])
        attention_weights = F.softmax(attention_weights).reshape(
            [bs, Len_q, self.num_heads, self.num_levels, self.num_points])

        if reference_points.shape[-1] == 2:
            offset_normalizer = paddle.to_tensor(value_spatial_shapes)
            offset_normalizer = offset_normalizer.flip([1]).reshape(
                [1, 1, 1, self.num_levels, 1, 2])
            sampling_locations = reference_points.reshape([
                bs, Len_q, 1, self.num_levels, 1, 2
            ]) + sampling_offsets / offset_normalizer
        elif reference_points.shape[-1] == 4:
            sampling_locations = (
                reference_points[:, :, None, :, None, :2] + sampling_offsets /
                self.num_points * reference_points[:, :, None, :, None, 2:] *
                0.5)
        else:
            raise ValueError(
                "Last dim of reference_points must be 2 or 4, but get {} instead.".
                format(reference_points.shape[-1]))

        if not isinstance(query, paddle.Tensor):
            from ppdet.modeling.transformers.utils import deformable_attention_core_func
            output = deformable_attention_core_func(
                value, value_spatial_shapes, value_level_start_index,
                sampling_locations, attention_weights)
        else:
            value_spatial_shapes = paddle.to_tensor(value_spatial_shapes)
            value_level_start_index = paddle.to_tensor(value_level_start_index)
            output = self.ms_deformable_attn_core(
                value, value_spatial_shapes, value_level_start_index,
                sampling_locations, attention_weights)
        output = self.output_proj(output)

        return output


class TransformerDecoderLayer(nn.Layer):
    def __init__(self,
                 d_model=256,
                 n_head=8,
                 dim_feedforward=1024,
                 dropout=0.,
                 activation="relu",
                 n_levels=4,
                 n_points=4,
                 weight_attr=None,
                 bias_attr=None):
        super(TransformerDecoderLayer, self).__init__()

        # self attention
        self.self_attn = MultiHeadAttention(d_model, n_head, dropout=dropout)
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(
            d_model,
            weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
            bias_attr=ParamAttr(regularizer=L2Decay(0.0)))

        # cross attention
        self.cross_attn = PPMSDeformableAttention(d_model, n_head, n_levels,
                                                  n_points, 1.0)
        self.dropout2 = nn.Dropout(dropout)
        self.norm2 = nn.LayerNorm(
            d_model,
            weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
            bias_attr=ParamAttr(regularizer=L2Decay(0.0)))

        # ffn
        self.linear1 = nn.Linear(d_model, dim_feedforward, weight_attr,
                                 bias_attr)
        self.activation = getattr(F, activation)
        self.dropout3 = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model, weight_attr,
                                 bias_attr)
        self.dropout4 = nn.Dropout(dropout)
        self.norm3 = nn.LayerNorm(
            d_model,
            weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
            bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
        self._reset_parameters()

    def _reset_parameters(self):
        linear_init_(self.linear1)
        linear_init_(self.linear2)
        xavier_uniform_(self.linear1.weight)
        xavier_uniform_(self.linear2.weight)

    def with_pos_embed(self, tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_ffn(self, tgt):
        return self.linear2(self.dropout3(self.activation(self.linear1(tgt))))

    def forward(self,
                tgt,
                reference_points,
                memory,
                memory_spatial_shapes,
                memory_level_start_index,
                attn_mask=None,
                memory_mask=None,
                query_pos_embed=None):
        # self attention
        q = k = self.with_pos_embed(tgt, query_pos_embed)
        if attn_mask is not None:
            attn_mask = paddle.where(
                attn_mask.astype('bool'),
                paddle.zeros(attn_mask.shape, tgt.dtype),
                paddle.full(attn_mask.shape, float("-inf"), tgt.dtype))
        tgt2 = self.self_attn(q, k, value=tgt, attn_mask=attn_mask)
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)

        # cross attention
        tgt2 = self.cross_attn(
            self.with_pos_embed(tgt, query_pos_embed), reference_points, memory,
            memory_spatial_shapes, memory_level_start_index, memory_mask)
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)

        # ffn
        tgt2 = self.forward_ffn(tgt)
        tgt = tgt + self.dropout4(tgt2)
        tgt = self.norm3(tgt)

        return tgt


class TransformerDecoder(nn.Layer):
    def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
        super(TransformerDecoder, self).__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.hidden_dim = hidden_dim
        self.num_layers = num_layers
        self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx

    def forward(self,
                tgt,
                ref_points_unact,
                memory,
                memory_spatial_shapes,
                memory_level_start_index,
                bbox_head,
                score_head,
                query_pos_head,
                attn_mask=None,
                memory_mask=None):
        output = tgt
        dec_out_bboxes = []
        dec_out_logits = []
        ref_points_detach = F.sigmoid(ref_points_unact)
        for i, layer in enumerate(self.layers):
            ref_points_input = ref_points_detach.unsqueeze(2)
            query_pos_embed = query_pos_head(ref_points_detach)

            output = layer(output, ref_points_input, memory,
                           memory_spatial_shapes, memory_level_start_index,
                           attn_mask, memory_mask, query_pos_embed)

            inter_ref_bbox = F.sigmoid(bbox_head[i](output) + inverse_sigmoid(
                ref_points_detach))

            if self.training:
                dec_out_logits.append(score_head[i](output))
                if i == 0:
                    dec_out_bboxes.append(inter_ref_bbox)
                else:
                    dec_out_bboxes.append(
                        F.sigmoid(bbox_head[i](output) + inverse_sigmoid(
                            ref_points)))
            elif i == self.eval_idx:
                dec_out_logits.append(score_head[i](output))
                dec_out_bboxes.append(inter_ref_bbox)
W
Wenyu 已提交
248
                break
W
Wenyu 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

            ref_points = inter_ref_bbox
            ref_points_detach = inter_ref_bbox.detach(
            ) if self.training else inter_ref_bbox

        return paddle.stack(dec_out_bboxes), paddle.stack(dec_out_logits)


@register
class RTDETRTransformer(nn.Layer):
    __shared__ = ['num_classes', 'hidden_dim', 'eval_size']

    def __init__(self,
                 num_classes=80,
                 hidden_dim=256,
                 num_queries=300,
                 position_embed_type='sine',
                 backbone_feat_channels=[512, 1024, 2048],
                 feat_strides=[8, 16, 32],
                 num_levels=3,
                 num_decoder_points=4,
                 nhead=8,
                 num_decoder_layers=6,
                 dim_feedforward=1024,
                 dropout=0.,
                 activation="relu",
                 num_denoising=100,
                 label_noise_ratio=0.5,
                 box_noise_scale=1.0,
                 learnt_init_query=True,
                 eval_size=None,
                 eval_idx=-1,
                 eps=1e-2):
        super(RTDETRTransformer, self).__init__()
        assert position_embed_type in ['sine', 'learned'], \
            f'ValueError: position_embed_type not supported {position_embed_type}!'
        assert len(backbone_feat_channels) <= num_levels
        assert len(feat_strides) == len(backbone_feat_channels)
        for _ in range(num_levels - len(feat_strides)):
            feat_strides.append(feat_strides[-1] * 2)

        self.hidden_dim = hidden_dim
        self.nhead = nhead
        self.feat_strides = feat_strides
        self.num_levels = num_levels
        self.num_classes = num_classes
        self.num_queries = num_queries
        self.eps = eps
        self.num_decoder_layers = num_decoder_layers
        self.eval_size = eval_size

        # backbone feature projection
        self._build_input_proj_layer(backbone_feat_channels)

        # Transformer module
        decoder_layer = TransformerDecoderLayer(
            hidden_dim, nhead, dim_feedforward, dropout, activation, num_levels,
            num_decoder_points)
        self.decoder = TransformerDecoder(hidden_dim, decoder_layer,
                                          num_decoder_layers, eval_idx)

        # denoising part
        self.denoising_class_embed = nn.Embedding(
            num_classes,
            hidden_dim,
            weight_attr=ParamAttr(initializer=nn.initializer.Normal()))
        self.num_denoising = num_denoising
        self.label_noise_ratio = label_noise_ratio
        self.box_noise_scale = box_noise_scale

        # decoder embedding
        self.learnt_init_query = learnt_init_query
        if learnt_init_query:
            self.tgt_embed = nn.Embedding(num_queries, hidden_dim)
        self.query_pos_head = MLP(4, 2 * hidden_dim, hidden_dim, num_layers=2)

        # encoder head
        self.enc_output = nn.Sequential(
            nn.Linear(hidden_dim, hidden_dim),
            nn.LayerNorm(
                hidden_dim,
                weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
                bias_attr=ParamAttr(regularizer=L2Decay(0.0))))
        self.enc_score_head = nn.Linear(hidden_dim, num_classes)
        self.enc_bbox_head = MLP(hidden_dim, hidden_dim, 4, num_layers=3)

        # decoder head
        self.dec_score_head = nn.LayerList([
            nn.Linear(hidden_dim, num_classes)
            for _ in range(num_decoder_layers)
        ])
        self.dec_bbox_head = nn.LayerList([
            MLP(hidden_dim, hidden_dim, 4, num_layers=3)
            for _ in range(num_decoder_layers)
        ])

        self._reset_parameters()

    def _reset_parameters(self):
        # class and bbox head init
        bias_cls = bias_init_with_prob(0.01)
        linear_init_(self.enc_score_head)
        constant_(self.enc_score_head.bias, bias_cls)
        constant_(self.enc_bbox_head.layers[-1].weight)
        constant_(self.enc_bbox_head.layers[-1].bias)
        for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
            linear_init_(cls_)
            constant_(cls_.bias, bias_cls)
            constant_(reg_.layers[-1].weight)
            constant_(reg_.layers[-1].bias)

        linear_init_(self.enc_output[0])
        xavier_uniform_(self.enc_output[0].weight)
        if self.learnt_init_query:
            xavier_uniform_(self.tgt_embed.weight)
        xavier_uniform_(self.query_pos_head.layers[0].weight)
        xavier_uniform_(self.query_pos_head.layers[1].weight)
        for l in self.input_proj:
            xavier_uniform_(l[0].weight)

        # init encoder output anchors and valid_mask
        if self.eval_size:
            self.anchors, self.valid_mask = self._generate_anchors()

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'backbone_feat_channels': [i.channels for i in input_shape]}

    def _build_input_proj_layer(self, backbone_feat_channels):
        self.input_proj = nn.LayerList()
        for in_channels in backbone_feat_channels:
            self.input_proj.append(
                nn.Sequential(
                    ('conv', nn.Conv2D(
                        in_channels,
                        self.hidden_dim,
                        kernel_size=1,
                        bias_attr=False)), ('norm', nn.BatchNorm2D(
                            self.hidden_dim,
                            weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
                            bias_attr=ParamAttr(regularizer=L2Decay(0.0))))))
        in_channels = backbone_feat_channels[-1]
        for _ in range(self.num_levels - len(backbone_feat_channels)):
            self.input_proj.append(
                nn.Sequential(
                    ('conv', nn.Conv2D(
                        in_channels,
                        self.hidden_dim,
                        kernel_size=3,
                        stride=2,
                        padding=1,
                        bias_attr=False)), ('norm', nn.BatchNorm2D(
                            self.hidden_dim,
                            weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
                            bias_attr=ParamAttr(regularizer=L2Decay(0.0))))))
            in_channels = self.hidden_dim

    def _get_encoder_input(self, feats):
        # get projection features
        proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)]
        if self.num_levels > len(proj_feats):
            len_srcs = len(proj_feats)
            for i in range(len_srcs, self.num_levels):
                if i == len_srcs:
                    proj_feats.append(self.input_proj[i](feats[-1]))
                else:
                    proj_feats.append(self.input_proj[i](proj_feats[-1]))

        # get encoder inputs
        feat_flatten = []
        spatial_shapes = []
        level_start_index = [0, ]
        for i, feat in enumerate(proj_feats):
            _, _, h, w = feat.shape
            # [b, c, h, w] -> [b, h*w, c]
            feat_flatten.append(feat.flatten(2).transpose([0, 2, 1]))
            # [num_levels, 2]
            spatial_shapes.append([h, w])
            # [l], start index of each level
            level_start_index.append(h * w + level_start_index[-1])

        # [b, l, c]
        feat_flatten = paddle.concat(feat_flatten, 1)
        level_start_index.pop()
        return (feat_flatten, spatial_shapes, level_start_index)

    def forward(self, feats, pad_mask=None, gt_meta=None):
        # input projection and embedding
        (memory, spatial_shapes,
         level_start_index) = self._get_encoder_input(feats)

        # prepare denoising training
        if self.training:
            denoising_class, denoising_bbox_unact, attn_mask, dn_meta = \
                get_contrastive_denoising_training_group(gt_meta,
                                            self.num_classes,
                                            self.num_queries,
                                            self.denoising_class_embed.weight,
                                            self.num_denoising,
                                            self.label_noise_ratio,
                                            self.box_noise_scale)
        else:
            denoising_class, denoising_bbox_unact, attn_mask, dn_meta = None, None, None, None

        target, init_ref_points_unact, enc_topk_bboxes, enc_topk_logits = \
            self._get_decoder_input(
            memory, spatial_shapes, denoising_class, denoising_bbox_unact)

        # decoder
        out_bboxes, out_logits = self.decoder(
            target,
            init_ref_points_unact,
            memory,
            spatial_shapes,
            level_start_index,
            self.dec_bbox_head,
            self.dec_score_head,
            self.query_pos_head,
            attn_mask=attn_mask)
        return (out_bboxes, out_logits, enc_topk_bboxes, enc_topk_logits,
                dn_meta)

    def _generate_anchors(self,
                          spatial_shapes=None,
                          grid_size=0.05,
                          dtype="float32"):
        if spatial_shapes is None:
            spatial_shapes = [
                [int(self.eval_size[0] / s), int(self.eval_size[1] / s)]
                for s in self.feat_strides
            ]
        anchors = []
        for lvl, (h, w) in enumerate(spatial_shapes):
            grid_y, grid_x = paddle.meshgrid(
                paddle.arange(
                    end=h, dtype=dtype),
                paddle.arange(
                    end=w, dtype=dtype))
            grid_xy = paddle.stack([grid_x, grid_y], -1)

            valid_WH = paddle.to_tensor([h, w]).astype(dtype)
            grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH
            wh = paddle.ones_like(grid_xy) * grid_size * (2.0**lvl)
            anchors.append(
                paddle.concat([grid_xy, wh], -1).reshape([-1, h * w, 4]))

        anchors = paddle.concat(anchors, 1)
        valid_mask = ((anchors > self.eps) *
                      (anchors < 1 - self.eps)).all(-1, keepdim=True)
        anchors = paddle.log(anchors / (1 - anchors))
        anchors = paddle.where(valid_mask, anchors,
                               paddle.to_tensor(float("inf")))
        return anchors, valid_mask

    def _get_decoder_input(self,
                           memory,
                           spatial_shapes,
                           denoising_class=None,
                           denoising_bbox_unact=None):
        bs, _, _ = memory.shape
        # prepare input for decoder
        if self.training or self.eval_size is None:
            anchors, valid_mask = self._generate_anchors(spatial_shapes)
        else:
            anchors, valid_mask = self.anchors, self.valid_mask
        memory = paddle.where(valid_mask, memory, paddle.to_tensor(0.))
        output_memory = self.enc_output(memory)

        enc_outputs_class = self.enc_score_head(output_memory)
        enc_outputs_coord_unact = self.enc_bbox_head(output_memory) + anchors

        _, topk_ind = paddle.topk(
            enc_outputs_class.max(-1), self.num_queries, axis=1)
        # extract region proposal boxes
        batch_ind = paddle.arange(end=bs, dtype=topk_ind.dtype)
        batch_ind = batch_ind.unsqueeze(-1).tile([1, self.num_queries])
        topk_ind = paddle.stack([batch_ind, topk_ind], axis=-1)

        reference_points_unact = paddle.gather_nd(enc_outputs_coord_unact,
                                                  topk_ind)  # unsigmoided.
        enc_topk_bboxes = F.sigmoid(reference_points_unact)
        if denoising_bbox_unact is not None:
            reference_points_unact = paddle.concat(
                [denoising_bbox_unact, reference_points_unact], 1)
        if self.training:
            reference_points_unact = reference_points_unact.detach()
        enc_topk_logits = paddle.gather_nd(enc_outputs_class, topk_ind)

        # extract region features
        if self.learnt_init_query:
            target = self.tgt_embed.weight.unsqueeze(0).tile([bs, 1, 1])
        else:
            target = paddle.gather_nd(output_memory, topk_ind)
            if self.training:
                target = target.detach()
        if denoising_class is not None:
            target = paddle.concat([denoising_class, target], 1)

        return target, reference_points_unact, enc_topk_bboxes, enc_topk_logits