test_activation_op.py 5.7 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
import unittest
import numpy as np
from op_test import OpTest


class TestExp(OpTest):
    def setUp(self):
        self.op_type = "exp"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.exp(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestRelu(OpTest):
    def setUp(self):
        self.op_type = "relu"
24 25 26
        x = np.random.uniform(-1, 1, [11, 17]).astype("float32")
        x = np.sign(x) * np.exp(np.abs(x))
        self.inputs = {'X': x}
Q
qijun 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
        self.outputs = {'Y': np.maximum(self.inputs['X'], 0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestSigmoid(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': 1 / (1 + np.exp(-self.inputs['X']))}

    def test_check_output(self):
        self.check_output()

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.008)


class TestTanh(OpTest):
    def setUp(self):
        self.op_type = "tanh"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.tanh(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestSqrt(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.sqrt(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestAbs(OpTest):
    def setUp(self):
        self.op_type = "abs"
        x = np.random.uniform(-1, 1, [11, 17]).astype("float32")
        x = np.sign(x) * np.exp(np.abs(x))
        self.inputs = {'X': x}
        self.outputs = {'Y': np.abs(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestReciprocal(OpTest):
    def setUp(self):
        self.op_type = "reciprocal"
        self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
        self.outputs = {'Y': np.reciprocal(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.01)


class TestLog(OpTest):
    def setUp(self):
        self.op_type = "log"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.log(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestSquare(OpTest):
    def setUp(self):
        self.op_type = "square"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.square(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestBRelu(OpTest):
    def setUp(self):
        self.op_type = "brelu"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        x = 2 * np.sign(x) * np.exp(np.abs(x))
        self.inputs = {'X': x}
        t_min = 0
        t_max = 4
        self.attrs = {'t_min': t_min, 't_max': t_max}
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
        self.outputs = {'Y': t}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.02)


class TestSoftRelu(OpTest):
    def setUp(self):
        self.op_type = "soft_relu"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        x = 2 * np.sign(x) * np.exp(np.abs(x))
        self.inputs = {'X': x}
        threshold = 4
        self.attrs = {'threshold': threshold}
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
        self.outputs = {'Y': np.log((np.exp(t) + 1))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.02)


class TestPow(OpTest):
    def setUp(self):
        self.op_type = "pow"
        self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
        self.attrs = {'factor': 3}
        self.outputs = {'Y': np.power(self.inputs['X'], 3)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.02)


class TestSTanh(OpTest):
    def setUp(self):
        self.op_type = "stanh"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
        self.outputs = {'Y': scale_b * np.tanh(self.inputs['X'] * scale_a)}

    def test_check_output(self):
        self.check_output()

Q
qijun 已提交
208 209 210 211 212 213
    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


if __name__ == "__main__":
    unittest.main()