nn.py 383.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
90
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
91 92 93 94 95
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
96
    'group_norm',
D
dengkaipeng 已提交
97
    'spectral_norm',
X
Xin Pan 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
111
    'roi_align',
X
Xin Pan 已提交
112 113 114 115
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
116
    'resize_nearest',
X
Xin Pan 已提交
117 118 119 120 121 122
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
123
    'selu',
X
Xin Pan 已提交
124 125 126
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
127
    'margin_rank_loss',
X
Xin Pan 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
171
    'space_to_depth',
W
whs 已提交
172
    'affine_grid',
S
sneaxiy 已提交
173
    'sequence_reverse',
174
    'affine_channel',
B
barrierye 已提交
175
    'similarity_focus',
M
minqiyang 已提交
176
    'hash',
D
dengkaipeng 已提交
177
    'grid_sampler',
G
gmcather 已提交
178 179
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
180
    'bilinear_tensor_product',
C
chengduo 已提交
181 182
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
183
    'lstm',
S
shippingwang 已提交
184
    'shuffle_channel',
S
sneaxiy 已提交
185
    'py_func',
186
    'psroi_pool',
H
heqiaozhi 已提交
187
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
188
    'huber_loss',
Z
zhaozhehao 已提交
189
    'tree_conv',
C
ceci3 已提交
190
    'npair_loss',
Y
Yu Yang 已提交
191 192
]

J
jerrywgz 已提交
193 194
kIgnoreIndex = -100

Y
Yu Yang 已提交
195 196 197 198 199 200 201

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
202
       is_test=False,
203
       name=None):
Y
Yu Yang 已提交
204
    """
205
    **Fully Connected Layer**
Y
Yu Yang 已提交
206

207 208 209 210 211 212 213 214
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
215
    to the output as well.
C
caoying03 已提交
216

C
caoying03 已提交
217
    This process can be formulated as follows:
218 219 220

    .. math::

221
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
222 223 224

    In the above equation:

C
caoying03 已提交
225 226 227 228
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
229
    * :math:`Act`: The activation function.
C
caoying03 已提交
230
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
231 232

    Args:
R
ranqiu 已提交
233 234 235 236 237 238 239 240 241 242
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
243
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
244 245 246 247
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
248 249
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
250
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
251
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
252
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
253

254
    Returns:
F
fengjiayi 已提交
255
        Variable: The transformation result.
256 257

    Raises:
C
caoying03 已提交
258
        ValueError: If rank of the input tensor is less than 2.
259 260 261 262

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
263
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
264
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
265
    """
C
caoying03 已提交
266

C
caoying03 已提交
267
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
268 269 270 271

    dtype = helper.input_dtype()

    mul_results = []
272 273
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
274 275 276
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
277

Y
Yu Yang 已提交
278
        w = helper.create_parameter(
279
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
280
        tmp = helper.create_variable_for_type_inference(dtype)
281
        helper.append_op(
282 283 284
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
285
            outputs={"Out": tmp},
M
mozga-intel 已提交
286 287
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
288 289 290 291
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
292
    else:
X
Xin Pan 已提交
293
        pre_bias = helper.create_variable_for_type_inference(dtype)
294
        helper.append_op(
295 296 297
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
298
            attrs={"use_mkldnn": False})
299 300 301 302
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
303 304


305 306 307
def embedding(input,
              size,
              is_sparse=False,
308
              is_distributed=False,
309 310 311
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
312
    """
313 314
    **Embedding Layer**

315
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
316 317
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
318 319 320

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
321 322

    Args:
323 324 325 326 327
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
328
        is_distributed(bool): Whether to run lookup table from remote parameter server.
329 330
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
331
            with zeros whenever lookup encounters it in :attr:`input`. If
332
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
333 334
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
335
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
336

337 338 339
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
340

341 342
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
343

C
chengduoZH 已提交
344
          dict_size = len(dataset.ids)
345
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
346
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
347 348 349
    """

    helper = LayerHelper('embedding', **locals())
350
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
351 352
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
353 354
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
355
    tmp = helper.create_variable_for_type_inference(dtype)
356 357
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
358 359 360 361 362
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
363 364 365
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
366
            'remote_prefetch': remote_prefetch,
367 368
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
369 370 371
    return tmp


W
wopeizl 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
388

W
wopeizl 已提交
389 390 391 392 393 394 395 396 397 398 399
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
400

W
wopeizl 已提交
401 402 403 404
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
405

W
wopeizl 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
492 493


P
phlrain 已提交
494 495 496 497 498 499
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
500
         dropout_prob=0.0,
P
phlrain 已提交
501 502 503 504 505
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
506
    """
P
phlrain 已提交
507
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
508 509

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
510
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
511 512
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
513
    .. math::
M
minqiyang 已提交
514 515 516 517 518 519 520

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
521
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
522 523 524 525

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
526 527

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
528 529 530 531 532 533
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
534 535 536
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
537
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
538

M
minqiyang 已提交
539
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
540 541 542 543 544
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
545
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
546 547 548 549 550
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
551
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
552 553
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
554 555
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
556 557 558 559 560 561
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
562
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
563

L
liuhongyu 已提交
564 565

    Returns:
M
minqiyang 已提交
566 567
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
568
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
569

H
haowang101779990 已提交
570 571 572 573
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
574
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
575 576
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
577
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
593
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
594 595 596 597 598 599
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
600 601 602
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
662 663 664 665 666 667 668 669 670 671
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
672
                  proj_activation='tanh',
673
                  dtype='float32',
X
xuezhong 已提交
674 675 676 677 678
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
679 680 681
    """
    **Dynamic LSTMP Layer**

682 683 684 685 686 687
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
688 689 690 691 692

    The formula is as follows:

    .. math::

693
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
694

695
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
696

697
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
698

699
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
700

701
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
702

703
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
704

705
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
706

Y
Yibing Liu 已提交
707 708 709 710 711 712
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
713
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
714
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
715
          bias vector).
Y
Yibing Liu 已提交
716 717 718
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
719
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
720
    * :math:`h`: The hidden state.
721
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
722 723
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
724
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
725
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
726
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
727 728
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
729 730 731 732

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
733

Y
Yibing Liu 已提交
734 735 736 737 738 739 740 741 742 743 744 745
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
746
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
747 748
                               hidden-hidden weight and projection weight.

749 750
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
751 752
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
753 754
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
755
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
756 757 758 759 760

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
761
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
762 763 764 765 766 767
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
768
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
769 770 771
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
772
                                - The shape is (1 x 7D).
C
chengduo 已提交
773 774 775 776 777

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
778 779 780 781 782 783 784 785 786
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
787
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
788 789
                              default "tanh".
        proj_activation(str): The activation for projection output.
790
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
791
                              default "tanh".
Y
Yibing Liu 已提交
792
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
793 794
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
795 796 797 798 799 800 801 802 803 804 805
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
806 807

    Returns:
808 809 810 811
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
812 813

    Examples:
814

Y
Yibing Liu 已提交
815 816
        .. code-block:: python

817 818 819 820
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
821
            hidden_dim, proj_dim = 512, 256
822
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
823
                                     act=None, bias_attr=None)
824 825 826
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
827 828 829 830
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
831
    """
832

C
chengduo 已提交
833
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
834
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
835
    size = size // 4
Y
Yibing Liu 已提交
836 837 838 839 840 841 842 843 844 845
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
846 847 848 849 850 851
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
867

X
xuezhong 已提交
868 869 870 871 872
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
873 874
    helper.append_op(
        type='lstmp',
875
        inputs=inputs,
Y
Yibing Liu 已提交
876 877 878 879 880 881 882 883 884
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
885 886
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
887 888 889 890 891 892 893 894 895
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
896 897 898 899 900 901 902
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
903 904
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
905
    """
906
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
907

908 909 910
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
911

G
guosheng 已提交
912 913 914 915 916 917 918 919 920
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
921

G
guosheng 已提交
922
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
923

Q
Qiao Longfei 已提交
924 925 926

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
927 928 929 930 931 932 933 934 935 936 937 938
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
939
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
940 941
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
942 943 944 945
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
946
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
947 948

    Args:
949 950
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
951
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
952
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
953 954
            is the hidden size.
        size(int): The dimension of the gru cell.
955
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
956 957
            hidden-hidden weight matrix. Note:

958
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
959
              :math:`D` is the hidden size.
960
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
961
              The first part are weights of the update gate and reset gate with
962
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
963
              candidate hidden state with shape :math:`(D \\times D)`.
964 965 966 967 968

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
969
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
970
            the bias in the update gate, reset gate and candidate calculations.
971 972 973
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
974 975
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
976
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
977 978 979
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
980
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
981
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
982 983 984 985
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
986 987

    Returns:
G
guosheng 已提交
988
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
989
            and sequence length is the same with the input.
990

G
guosheng 已提交
991
    Examples:
992

G
guosheng 已提交
993 994
        .. code-block:: python

995 996 997 998
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
999
            hidden_dim = 512
1000
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1001
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1011
    batch_size = input.shape[0]
G
guosheng 已提交
1012
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1013
    if h_0:
G
guosheng 已提交
1014
        assert h_0.shape == (
Y
Yancey 已提交
1015 1016 1017
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1018

X
Xin Pan 已提交
1019 1020 1021 1022
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1036 1037
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1038 1039 1040 1041
        })
    return hidden


Y
Yu Yang 已提交
1042 1043 1044
def gru_unit(input,
             hidden,
             size,
1045 1046
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1047
             activation='tanh',
Q
Qiao Longfei 已提交
1048 1049
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1050
    """
1051 1052 1053
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1054
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1055
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1056

1057 1058
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1059

1060
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1061

1062
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1063

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1079 1080

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1081 1082 1083
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1084 1085
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1086 1087
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1088 1089 1090
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1091 1092 1093

    Args:
        input (Variable): The fc transformed input value of current step.
1094
        hidden (Variable): The hidden value of gru unit from previous step.
1095
        size (integer): The input dimension value.
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1110
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1111
            the bias in the update gate, reset gate and candidate calculations.
1112 1113 1114
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1115 1116
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1117 1118 1119 1120
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1121

1122 1123 1124 1125 1126 1127
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1128

1129
             # assuming we have x_t_data and prev_hidden of size=10
1130
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1131 1132
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1145
    size = size // 3
Y
Yu Yang 已提交
1146 1147

    # create weight
1148 1149
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1150

X
Xin Pan 已提交
1151 1152 1153
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1154
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1155
    # create bias
1156
    if helper.bias_attr:
Y
Yu Yang 已提交
1157 1158 1159
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1160
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1161 1162 1163

    helper.append_op(
        type='gru_unit',
1164
        inputs=inputs,
Y
Yu Yang 已提交
1165 1166 1167 1168 1169 1170
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1171 1172
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1173 1174 1175 1176 1177
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1178
@templatedoc()
1179
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1180 1181 1182 1183 1184 1185 1186
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1187
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1188 1189 1190 1191
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1192 1193 1194
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1195 1196

    """
Y
Yu Yang 已提交
1197 1198 1199 1200 1201 1202
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1203 1204 1205 1206 1207 1208 1209 1210
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1226 1227 1228 1229
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1230

W
wopeizl 已提交
1231 1232
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1233

W
wopeizl 已提交
1234
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1235

W
wopeizl 已提交
1236
        label(${label_type}): ${label_comment}
1237

W
wopeizl 已提交
1238 1239
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1240

W
wopeizl 已提交
1241 1242
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1243

W
wopeizl 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1254
                "Transition": transition,
W
wopeizl 已提交
1255 1256
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1257

W
wopeizl 已提交
1258
    return viterbi_path
Y
Yu Yang 已提交
1259 1260


Y
yi.wu 已提交
1261
@templatedoc()
F
fengjiayi 已提交
1262
def cos_sim(X, Y):
Y
Yu Yang 已提交
1263
    """
Y
yi.wu 已提交
1264 1265 1266
    ${comment}

    Args:
1267 1268
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1269

Y
yi.wu 已提交
1270
    Returns:
1271
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1272
    """
F
fengjiayi 已提交
1273
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1274 1275 1276
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1287 1288 1289 1290 1291
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1292
            dropout_implementation="downgrade_in_infer"):
1293 1294 1295 1296 1297
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1298
    training. The dropout operator randomly sets (according to the given dropout
1299 1300 1301
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1302 1303
    dropout op can be removed from the program to make the program more efficient.

1304
    Args:
1305 1306
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1307 1308 1309 1310 1311 1312 1313
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1314 1315
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1316
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1317 1318

                                           - train: out = input * mask
C
ceci3 已提交
1319
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1320 1321 1322

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1323
                                        2. upscale_in_train, upscale the outcome at training time
1324

H
haowang101779990 已提交
1325 1326
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1327

H
haowang101779990 已提交
1328 1329
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1330

M
minqiyang 已提交
1331

1332
    Returns:
1333
        Variable: A tensor variable is the shape with `x`.
1334 1335

    Examples:
1336

1337 1338
        .. code-block:: python

1339 1340
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1341 1342
    """

F
fengjiayi 已提交
1343
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1344 1345 1346
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1347 1348 1349 1350

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1351 1352 1353 1354 1355
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1356 1357 1358 1359
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1360 1361
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1362
        })
1363 1364 1365
    return out


J
jerrywgz 已提交
1366
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1367
    """
Y
Yibing Liu 已提交
1368 1369
    **Cross Entropy Layer**

1370 1371 1372
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1373 1374

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1375
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1376

Y
Yibing Liu 已提交
1377
        .. math::
Y
yangyaming 已提交
1378

Y
Yibing Liu 已提交
1379 1380 1381
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1382 1383
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1384 1385 1386 1387 1388

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1389
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1390 1391 1392
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1393 1394
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1395
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1396

Y
Yibing Liu 已提交
1397
    Args:
Y
yangyaming 已提交
1398
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1399 1400 1401 1402
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1403
        label (Variable|list): the ground truth which is a 2-D tensor. When
1404 1405 1406 1407
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1408
        soft_label (bool): a flag indicating whether to
1409
                                           interpretate the given labels as soft
1410
                                           labels. Default: `False`.
M
minqiyang 已提交
1411 1412
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1413
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1414 1415 1416 1417 1418

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1419 1420 1421
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1422

H
haowang101779990 已提交
1423 1424
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1425

H
haowang101779990 已提交
1426 1427
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1428 1429 1430 1431 1432 1433

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1434
    """
S
sneaxiy 已提交
1435 1436
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1437
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1438
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1439 1440 1441 1442 1443
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1444 1445
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1446 1447 1448
    return out


S
sneaxiy 已提交
1449 1450 1451 1452
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1453
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1454 1455 1456 1457 1458
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1459
                 'MatchX': [match_x],
S
sneaxiy 已提交
1460 1461 1462 1463 1464
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1465
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1466 1467 1468
    """
    Bayesian Personalized Ranking Loss Operator.

1469
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1470 1471 1472 1473 1474 1475
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1476 1477 1478 1479 1480 1481
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1482 1483
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1484 1485 1486
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1487 1488 1489
    Examples:
        .. code-block:: python

1490
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1491
    """
1492 1493 1494 1495 1496 1497

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1498
                'Label': [label]},
1499 1500 1501 1502
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1503
def square_error_cost(input, label):
Y
Yu Yang 已提交
1504
    """
1505 1506
    **Square error cost layer**

1507 1508
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1523 1524
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1525 1526

    Returns:
G
guosheng 已提交
1527
        Variable: The tensor variable storing the element-wise squared error \
1528
                  difference of input and label.
1529 1530 1531 1532 1533 1534 1535 1536

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1537
    """
F
fengjiayi 已提交
1538
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1539
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1540 1541 1542 1543 1544 1545
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1546
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1547
    helper.append_op(
F
fengjiayi 已提交
1548 1549
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1550 1551 1552
    return square_out


Y
yi.wu 已提交
1553
@templatedoc()
Y
Yu Yang 已提交
1554 1555 1556 1557
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1558
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1559
    """
Y
yi.wu 已提交
1560
    **Chunk Evaluator**
Y
yi.wu 已提交
1561

Y
yangyaming 已提交
1562
    This function computes and outputs the precision, recall and
1563
    F1-score of chunk detection.
Y
yi.wu 已提交
1564

M
minqiyang 已提交
1565
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1566
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1567 1568 1569 1570 1571 1572

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1573

Y
yi.wu 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1599

Y
yi.wu 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1624
    Args:
1625 1626 1627 1628 1629
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1630

Y
yi.wu 已提交
1631
    Returns:
Y
update  
yi.wu 已提交
1632 1633 1634
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1635

Y
yi.wu 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1648
    """
F
fengjiayi 已提交
1649
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1650 1651

    # prepare output
X
Xin Pan 已提交
1652 1653 1654 1655 1656 1657 1658
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1659 1660 1661 1662 1663 1664 1665 1666

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1667 1668 1669 1670
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1671 1672 1673
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1674 1675
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1676
        })
1677 1678
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1679 1680


1681
@templatedoc()
Y
Yu Yang 已提交
1682 1683 1684 1685 1686 1687 1688
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1689 1690
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1691 1692 1693 1694
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1695 1696 1697 1698 1699 1700 1701

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1715

1716 1717
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1718 1719 1720 1721 1722 1723 1724
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1725
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1736
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1737 1738 1739 1740 1741 1742
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1743
def sequence_softmax(input, use_cudnn=False, name=None):
1744 1745 1746
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1747
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1764 1765 1766
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1767

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1779 1780
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1781
    softmax_out = helper.create_variable_for_type_inference(dtype)
1782 1783 1784 1785 1786 1787 1788 1789
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1790
def softmax(input, use_cudnn=False, name=None):
Q
qiaolongfei 已提交
1791
    """
1792
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1793
    has the same shape as the input.
Q
qiaolongfei 已提交
1794

1795 1796 1797 1798 1799 1800
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1801
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1802 1803 1804 1805 1806 1807 1808

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1809
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1810 1811 1812 1813 1814 1815 1816 1817

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1818 1819
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1820 1821
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1834 1835
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1836
    softmax_out = helper.create_variable_for_type_inference(dtype)
1837 1838 1839 1840 1841 1842 1843 1844
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1845 1846 1847
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1848 1849
           stride=1,
           padding=0,
1850
           dilation=1,
Y
Yu Yang 已提交
1851 1852 1853
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1854
           use_cudnn=True,
1855 1856
           act=None,
           name=None):
Y
Yu Yang 已提交
1857
    """
C
chengduoZH 已提交
1858
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1859 1860
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1861
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1862 1863 1864 1865 1866 1867 1868
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1869 1870 1871
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1872

1873
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1874

C
chengduoZH 已提交
1875 1876
    .. math::

C
refine  
chengduoZH 已提交
1877
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1878

T
tensor-tang 已提交
1879
    Where:
C
chengduoZH 已提交
1880

1881 1882 1883 1884 1885
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1886
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1887 1888 1889

    Example:

1890 1891
        - Input:

W
weixing02 已提交
1892
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1893

W
weixing02 已提交
1894
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1895

1896
        - Output:
T
tensor-tang 已提交
1897

W
weixing02 已提交
1898
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1899

C
chengduoZH 已提交
1900
        Where
1901 1902

        .. math::
C
chengduoZH 已提交
1903

W
weixing02 已提交
1904 1905
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1906 1907

    Args:
1908
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1909
        num_filters(int): The number of filter. It is as same as the output
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1927 1928 1929 1930 1931
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1932
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1933 1934 1935 1936 1937
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1938 1939
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1940 1941
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1942
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1943
            will be named automatically. Default: None
C
chengduoZH 已提交
1944 1945

    Returns:
G
guosheng 已提交
1946
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1947 1948
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1949
    Raises:
1950 1951
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1952

C
chengduoZH 已提交
1953 1954 1955
    Examples:
        .. code-block:: python

1956 1957
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1958 1959 1960
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1961
    assert param_attr is not False, "param_attr should not be False here."
1962
    l_type = 'conv2d'
X
xzl 已提交
1963 1964
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1965
        l_type = 'depthwise_conv2d'
1966 1967 1968 1969

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1970 1971 1972 1973 1974
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1975
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1976

C
chengduoZH 已提交
1977 1978 1979
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1980
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1981

C
chengduoZH 已提交
1982 1983
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1984 1985

    input_shape = input.shape
M
minqiyang 已提交
1986
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1987 1988

    def _get_default_param_initializer():
C
chengduo 已提交
1989 1990
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1991 1992 1993 1994 1995 1996 1997 1998
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1999
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2015
    helper.append_op(
2016
        type=l_type,
Y
Yu Yang 已提交
2017 2018 2019 2020 2021
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2022 2023 2024
        attrs={
            'strides': stride,
            'paddings': padding,
2025
            'dilations': dilation,
C
chengduoZH 已提交
2026
            'groups': groups,
2027
            'use_cudnn': use_cudnn,
2028
            'use_mkldnn': False,
2029
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2030
        })
Y
Yu Yang 已提交
2031 2032 2033 2034 2035 2036

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2054 2055 2056 2057 2058 2059
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2069 2070
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2071 2072 2073
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2074
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2100
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2101 2102
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2103
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2104 2105
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2106
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2107 2108
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2109
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2110 2111 2112 2113 2114 2115
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2126 2127
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2128 2129
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2130
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2131
            will be named automatically. Default: None.
C
chengduoZH 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2144 2145
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2146 2147 2148
    """

    l_type = 'conv3d'
C
chengduo 已提交
2149
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2160
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2174 2175 2176
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2177 2178 2179 2180 2181 2182 2183 2184
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2185
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2200
            'use_mkldnn': False
C
chengduoZH 已提交
2201 2202
        })

2203
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2204 2205 2206 2207

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2208
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2209
    """
Y
yangyaming 已提交
2210 2211 2212
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2224
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2225 2226 2227 2228 2229
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2230
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2231 2232 2233 2234 2235 2236 2237

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2238 2239
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2240

L
Luo Tao 已提交
2241 2242
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2243
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2244
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2245
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2246 2247 2248 2249 2250 2251 2252

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2253

Y
yangyaming 已提交
2254
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2255 2256 2257 2258 2259
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2260 2261
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2262
    """
F
fengjiayi 已提交
2263
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2264
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2265 2266
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2267 2268 2269 2270 2271 2272

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2273 2274
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2275

Y
yangyaming 已提交
2276 2277 2278 2279 2280
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2281 2282 2283
    return pool_out


C
add doc  
chengduoZH 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2303
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2304 2305 2306 2307 2308
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2309
def sequence_first_step(input):
L
Luo Tao 已提交
2310
    """
L
Luo Tao 已提交
2311
    This function gets the first step of sequence.
L
Luo Tao 已提交
2312 2313 2314 2315

    .. code-block:: text

       x is a 1-level LoDTensor:
2316
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2317 2318 2319 2320 2321
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2322
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2323
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2324

L
Luo Tao 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2334

Y
yangyaming 已提交
2335
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2336 2337 2338
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2339 2340 2341
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2342
def sequence_last_step(input):
L
Luo Tao 已提交
2343
    """
L
Luo Tao 已提交
2344
    This function gets the last step of sequence.
L
Luo Tao 已提交
2345 2346 2347 2348

    .. code-block:: text

       x is a 1-level LoDTensor:
2349
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2350 2351 2352 2353 2354
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2355
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2356
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2357

L
Luo Tao 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2367

Y
yangyaming 已提交
2368
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2369 2370 2371
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2372 2373 2374
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2375 2376 2377 2378
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2379
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2380 2381 2382 2383 2384
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2385

H
haowang101779990 已提交
2386
              - Case:
Y
Yibing Liu 已提交
2387

2388
            Given the input Variable **input**:
2389

2390 2391 2392
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2393

2394
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2395

2396
            the output Variable will be
2397

2398 2399 2400
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2401

M
minqiyang 已提交
2402
    Note:
H
haowang101779990 已提交
2403
          The first dimension size of **input**, **offset** and **length**
2404
          should be equal. The **offset** should start from 0.
2405

Y
Yibing Liu 已提交
2406
    Args:
2407
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2408
                         sequences.
Y
Yibing Liu 已提交
2409 2410 2411 2412 2413 2414
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2415
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2426
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2427 2428 2429 2430
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2431
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2446
@templatedoc()
Y
Yu Yang 已提交
2447
def pool2d(input,
C
chengduoZH 已提交
2448 2449
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2450 2451
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2452
           global_pooling=False,
C
chengduoZH 已提交
2453
           use_cudnn=True,
2454
           ceil_mode=False,
2455 2456
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2457
    """
F
fengjiayi 已提交
2458
    ${comment}
2459 2460

    Args:
2461 2462 2463
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2464
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2465
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2466 2467
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2468
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2469 2470 2471 2472 2473 2474
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2475 2476 2477
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2478
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2479
                        layer will be named automatically.
2480
        exclusive (bool): Whether to exclude padding points in average pooling
2481
                          mode, default is true
F
fengjiayi 已提交
2482

2483
    Returns:
F
fengjiayi 已提交
2484
        Variable: The pooling result.
F
fengjiayi 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2497
          pool2d = fluid.layers.pool2d(
2498 2499 2500 2501
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2502
                            global_pooling=False)
Y
Yu Yang 已提交
2503 2504 2505 2506 2507
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2508

C
chengduoZH 已提交
2509 2510 2511 2512 2513
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2514 2515 2516 2517
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2518 2519
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2520

C
Add doc  
chengduoZH 已提交
2521
    l_type = 'pool2d'
2522 2523

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2524
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2525
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2526 2527

    helper.append_op(
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2539 2540
            "use_mkldnn": False,
            "exclusive": exclusive,
2541 2542 2543 2544 2545
        })

    return pool_out


D
dengkaipeng 已提交
2546
@templatedoc()
2547 2548 2549 2550 2551 2552 2553 2554
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2555 2556
           name=None,
           exclusive=True):
2557
    """
2558
    ${comment}
2559 2560

    Args:
D
dengkaipeng 已提交
2561 2562 2563 2564 2565
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2566 2567 2568 2569 2570
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2571 2572 2573 2574 2575 2576 2577
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2578
        exclusive (bool): Whether to exclude padding points in average pooling
2579
                          mode, default is true
2580

2581
    Returns:
2582
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2596 2597 2598 2599 2600
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2601

C
chengduoZH 已提交
2602 2603 2604 2605 2606
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2607 2608 2609
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2610

C
chengduoZH 已提交
2611 2612
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2613

2614 2615
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2616
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2617
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2618 2619

    helper.append_op(
2620
        type=l_type,
Y
Yu Yang 已提交
2621 2622 2623 2624 2625 2626 2627
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2628
            "paddings": pool_padding,
2629
            "use_cudnn": use_cudnn,
2630
            "ceil_mode": ceil_mode,
2631 2632
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2633 2634 2635 2636 2637
        })

    return pool_out


2638 2639 2640 2641 2642 2643 2644
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2645 2646 2647 2648 2649 2650 2651
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2652

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2666 2667 2668 2669 2670 2671 2672 2673 2674

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2675 2676
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2691
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2692
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2693
          # of input data into m * n grids averagely and performs poolings in each
2694 2695
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2696
          #
2697 2698 2699 2700 2701 2702 2703 2704
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2705 2706
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2707
          pool_out = fluid.layers.adaptive_pool2d(
2708 2709
                            input=data,
                            pool_size=[3, 3],
2710
                            pool_type='avg')
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2721
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2747
    return (pool_out, mask) if require_index else pool_out
2748 2749 2750 2751 2752 2753 2754 2755 2756


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2757 2758 2759 2760 2761 2762 2763
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2764

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2782 2783 2784

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2785 2786 2787
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2788
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2789
            it must contain three integers, (Depth, Height, Width).
2790
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2791 2792
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2807 2808
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2809
          # of input data into l * m * n grids averagely and performs poolings in each
2810 2811
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2812
          #
2813 2814 2815 2816 2817 2818 2819 2820 2821
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2822
          #                 output[:, :, i, j, k] =
2823 2824
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2825 2826
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2827
          pool_out, mask = fluid.layers.adaptive_pool3d(
2828
                            input=data,
D
dengkaipeng 已提交
2829
                            pool_size=[3, 3, 3],
2830
                            pool_type='avg')
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2841
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2867
    return (pool_out, mask) if require_index else pool_out
2868 2869


Y
Yu Yang 已提交
2870 2871 2872 2873 2874 2875 2876
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2877
               data_layout='NCHW',
Y
Yang Yang 已提交
2878
               in_place=False,
2879 2880
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2881
               moving_variance_name=None,
2882
               do_model_average_for_mean_and_var=False,
2883 2884
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2885
    """
Q
qiaolongfei 已提交
2886 2887 2888 2889
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2890

Q
qiaolongfei 已提交
2891
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2892

Q
qiaolongfei 已提交
2893 2894
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2895 2896 2897
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2910

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2924
    Args:
Q
qingqing01 已提交
2925
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2926
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2927 2928 2929 2930 2931 2932 2933 2934 2935
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2936 2937 2938 2939 2940 2941 2942 2943
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2944
        data_layout(string, default NCHW): NCHW|NHWC
2945
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2946 2947 2948 2949
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2950
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2951
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2952 2953 2954 2955 2956
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2957 2958

    Returns:
Q
qiaolongfei 已提交
2959
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2960 2961 2962 2963 2964 2965 2966

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2967
    """
C
chengduo 已提交
2968
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2969 2970 2971
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2972 2973 2974 2975
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
2994
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2995

2996 2997
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2998 2999 3000
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3001
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3002
        shape=param_shape,
W
Wu Yi 已提交
3003
        dtype=dtype)
3004 3005 3006 3007 3008 3009
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3010
            trainable=False,
W
wanghaoshuang 已提交
3011
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3012
        shape=param_shape,
W
Wu Yi 已提交
3013
        dtype=dtype)
3014
    variance.stop_gradient = True
Y
Yu Yang 已提交
3015 3016 3017 3018 3019 3020

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3021 3022 3023 3024
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3025

X
Xin Pan 已提交
3026 3027
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3045 3046 3047 3048
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3049
            "data_layout": data_layout,
X
Xin Pan 已提交
3050
            "use_mkldnn": False,
3051 3052
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3053
        })
Y
Yu Yang 已提交
3054 3055 3056 3057

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3177
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3178 3179 3180 3181

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3182
@templatedoc()
G
guosheng 已提交
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3193
    ${comment}
G
guosheng 已提交
3194 3195 3196

    The formula is as follows:

Y
yuyang18 已提交
3197
    ..  math::
G
guosheng 已提交
3198 3199 3200 3201 3202 3203 3204

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3205 3206 3207 3208 3209 3210 3211 3212
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3213

G
guosheng 已提交
3214 3215
    Args:
        input(Variable): The input tensor variable.
3216
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3217
            normalization. Default True.
3218
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3219 3220
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3221
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3222
            Default 1.
3223
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3224
            division by zero. Default 1e-05.
G
guosheng 已提交
3225
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3226 3227
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3228 3229
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3230
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3231 3232
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3233
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3234
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3235
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3236 3237 3238
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3239 3240

    Returns:
Y
yuyang18 已提交
3241
        ${y_comment}
G
guosheng 已提交
3242 3243 3244

    Examples:

Y
yuyang18 已提交
3245 3246 3247
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3263
    if shift:
G
guosheng 已提交
3264 3265 3266 3267 3268 3269
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3270 3271 3272 3273 3274
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3302
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3350 3351
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3369
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3370 3371 3372
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3373
    This layer calculates the spectral normalization value of weight parameters of
3374
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3375
    Parameters. Calculations are showed as follows.
3376

D
dengkaipeng 已提交
3377 3378 3379
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3380
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3393
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3394 3395 3396 3397

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3398

D
dengkaipeng 已提交
3399
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3400 3401
                

D
dengkaipeng 已提交
3402 3403 3404 3405
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3406 3407 3408
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3409 3410 3411
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3412
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3413 3414 3415 3416 3417 3418 3419 3420

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3421
    dtype = weight.dtype
D
dengkaipeng 已提交
3422 3423 3424

    # create intput and parameters
    inputs = {'Weight': weight}
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3443 3444

    # create output
3445
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3446 3447

    helper.append_op(
3448
        type="spectral_norm",
D
Dun 已提交
3449
        inputs=inputs,
3450 3451 3452 3453 3454 3455
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3456

3457
    return out
D
Dun 已提交
3458 3459


Y
Yu Yang 已提交
3460 3461 3462 3463
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3464 3465 3466
                     padding=0,
                     stride=1,
                     dilation=1,
3467
                     groups=None,
C
caoying03 已提交
3468
                     param_attr=None,
3469
                     bias_attr=None,
C
chengduoZH 已提交
3470
                     use_cudnn=True,
3471
                     act=None,
C
caoying03 已提交
3472
                     name=None):
Y
Yu Yang 已提交
3473
    """
3474 3475 3476 3477 3478 3479 3480 3481
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3482 3483
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3484 3485 3486
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3487 3488 3489 3490 3491

    For each input :math:`X`, the equation is:

    .. math::

3492
        Out = \sigma (W \\ast X + b)
3493

3494
    Where:
3495 3496 3497

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3498 3499 3500 3501
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3502

3503 3504 3505 3506
    Example:

        - Input:

3507
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3508

3509
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3510 3511 3512

        - Output:

3513
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3514 3515

        Where
Y
Yu Yang 已提交
3516

3517 3518
        .. math::

3519 3520
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3521 3522
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3523 3524

    Args:
3525 3526 3527 3528
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3529 3530 3531 3532
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3561
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3562 3563 3564
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3565
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3566
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3567 3568

    Returns:
3569
        Variable: The tensor variable storing the convolution transpose result.
3570 3571

    Raises:
3572 3573
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3574 3575 3576 3577

    Examples:
       .. code-block:: python

3578 3579
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3580
    """
C
chengduo 已提交
3581
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3582 3583 3584 3585 3586 3587 3588 3589
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3590 3591 3592
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3593 3594 3595
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3596

C
chengduoZH 已提交
3597 3598
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3599

Y
Yu Yang 已提交
3600 3601 3602 3603 3604
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3605

Y
Yu Yang 已提交
3606 3607
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3608

C
chengduoZH 已提交
3609
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3610
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3611
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3612
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3613
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3614 3615 3616
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3617

3618 3619 3620 3621 3622 3623 3624
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3625
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3626
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3627

Y
Yu Yang 已提交
3628 3629 3630
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3631
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3632
    helper.append_op(
3633
        type=op_type,
Y
Yu Yang 已提交
3634 3635
        inputs={'Input': [input],
                'Filter': [img_filter]},
3636
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3637
        attrs={
3638
            'output_size': output_size,
3639 3640 3641 3642 3643
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3644 3645
        })

3646 3647 3648
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3649 3650


3651
def conv3d_transpose(input,
Y
Yu Yang 已提交
3652 3653 3654
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3655 3656 3657
                     padding=0,
                     stride=1,
                     dilation=1,
3658
                     groups=None,
C
caoying03 已提交
3659
                     param_attr=None,
3660
                     bias_attr=None,
C
chengduoZH 已提交
3661
                     use_cudnn=True,
3662
                     act=None,
C
caoying03 已提交
3663
                     name=None):
Y
Yu Yang 已提交
3664
    """
3665
    **Convlution3D transpose layer**
3666

3667
    The convolution3D transpose layer calculates the output based on the input,
3668
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3669 3670 3671 3672 3673 3674
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3675 3676 3677
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3678 3679 3680 3681 3682

    For each input :math:`X`, the equation is:

    .. math::

3683
        Out = \sigma (W \\ast X + b)
3684 3685 3686

    In the above equation:

3687 3688
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3689 3690 3691 3692
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3693

3694 3695 3696 3697
    Example:

        - Input:

3698
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3699

3700
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3701 3702 3703

        - Output:

3704
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3705 3706

        Where
Y
Yu Yang 已提交
3707

3708 3709
        .. math::

3710 3711 3712
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3713 3714

    Args:
3715
        input(Variable): The input image with [N, C, D, H, W] format.
3716 3717 3718
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3719
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3720 3721
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3722
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3723 3724 3725
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3726 3727
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3728
        stride(int|tuple): The stride size. If stride is a tuple, it must
3729 3730
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3731
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3732 3733 3734
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3735 3736 3737 3738 3739
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3740 3741 3742 3743 3744 3745 3746 3747 3748
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3749 3750
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3751 3752
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3753 3754
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3755 3756

    Returns:
3757
        Variable: The tensor variable storing the convolution transpose result.
3758 3759

    Raises:
3760 3761
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3762 3763 3764 3765

    Examples:
       .. code-block:: python

3766 3767
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3768
    """
C
chengduo 已提交
3769
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3770 3771
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3772
    if not isinstance(input, Variable):
3773
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3774 3775
    input_channel = input.shape[1]

3776 3777 3778
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3779

C
chengduoZH 已提交
3780 3781 3782
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3783 3784 3785 3786 3787 3788
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3789 3790 3791
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3792

3793
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3794
                         padding[0] - 1) // dilation[0] + 1
3795
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3796
                         padding[1] - 1) // dilation[1] + 1
3797
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3798
                         padding[2] - 1) // dilation[2] + 1
3799
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3800
    else:
3801 3802
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3803

3804
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3805
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3806 3807 3808
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3809
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3810
    helper.append_op(
3811
        type=l_type,
Y
Yu Yang 已提交
3812 3813
        inputs={'Input': [input],
                'Filter': [img_filter]},
3814
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3815 3816 3817 3818
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3819
            'groups': groups,
C
chengduoZH 已提交
3820 3821
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3822

3823 3824
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3825
    return out
Y
yangyaming 已提交
3826 3827


Y
yangyaming 已提交
3828
def sequence_expand(x, y, ref_level=-1, name=None):
3829
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3830 3831 3832 3833
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3834 3835 3836 3837 3838

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3839
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3840
                x.data = [[a], [b], [c], [d]]
3841 3842 3843
                x.dims = [4, 1]

            y is a LoDTensor:
3844 3845
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3846

Y
yangyaming 已提交
3847
            ref_level: 0
3848

Y
yangyaming 已提交
3849
            then output is a 1-level LoDTensor:
3850
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3851
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3852 3853 3854 3855
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3856
                x.data = [[a], [b], [c]]
3857 3858 3859
                x.dims = [3, 1]

            y is a LoDTensor:
3860
                y.lod = [[2, 0, 3]]
3861

Y
yangyaming 已提交
3862
            ref_level: -1
3863

Y
yangyaming 已提交
3864 3865 3866
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3867 3868 3869
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3870 3871
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3872
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3873
                        will be named automatically.
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3884
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3885
    """
Y
yangyaming 已提交
3886
    helper = LayerHelper('sequence_expand', input=x, **locals())
3887
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3888
    tmp = helper.create_variable_for_type_inference(dtype)
3889
    helper.append_op(
Y
yangyaming 已提交
3890 3891 3892 3893 3894
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3895
    return tmp
3896 3897


C
chengduo 已提交
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3954
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3955 3956 3957 3958 3959 3960 3961 3962
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3963
@templatedoc()
3964
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3965 3966 3967 3968 3969
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3970 3971 3972
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3973
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3974 3975 3976 3977
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3978 3979 3980
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3981

F
fengjiayi 已提交
3982
    Returns:
M
minqiyang 已提交
3983
        Variable: The padded sequence batch and the original lengths before
3984
                  padding. All sequences has the same length.
M
minqiyang 已提交
3985

F
fengjiayi 已提交
3986 3987 3988 3989 3990 3991 3992
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3993
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3994
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3995 3996 3997 3998 3999
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4000 4001
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4002 4003 4004 4005

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4006 4007 4008 4009 4010 4011
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4012 4013
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4014
        attrs={'padded_length': maxlen})
4015
    return out, length
F
fengjiayi 已提交
4016 4017


4018
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4019
    """
4020
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4021

4022 4023
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4024 4025 4026 4027 4028 4029 4030 4031 4032
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4033 4034 4035
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4036
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4037 4038 4039 4040 4041 4042

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4043
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4044 4045 4046 4047 4048 4049

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4050 4051
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4066
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4078 4079 4080 4081 4082 4083 4084
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4085
                is_accumulated=True,
4086 4087
                name=None,
                return_parent_idx=False):
4088
    """
4089 4090
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4091 4092 4093

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4094 4095

    This layer does the search in beams for one time step. Specifically, it
4096 4097 4098
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4110 4111 4112 4113

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4114

4115
    Args:
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4139 4140
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4141 4142
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4143 4144 4145 4146
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4147

4148
    Returns:
4149 4150 4151 4152
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4153 4154 4155 4156

    Examples:
        .. code-block:: python

4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4174
    helper = LayerHelper('beam_search', **locals())
4175 4176 4177 4178 4179 4180
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4181

X
Xin Pan 已提交
4182 4183 4184
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4185 4186 4187 4188 4189
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4190 4191 4192

    helper.append_op(
        type='beam_search',
4193
        inputs=inputs,
Q
Qiao Longfei 已提交
4194 4195 4196
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4197
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4198 4199 4200 4201 4202 4203
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4204
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4205
        })
4206 4207 4208 4209
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4210 4211


4212 4213 4214 4215 4216 4217 4218
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4219

4220 4221 4222 4223 4224 4225 4226 4227 4228
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4229

4230 4231 4232 4233 4234 4235
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4236

4237 4238
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4239

4240 4241 4242 4243 4244 4245
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4246 4247
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4263 4264 4265 4266
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4267
              param_attr=None,
C
caoying03 已提交
4268 4269
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4270 4271 4272 4273
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4274
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4275

4276
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4277

4278
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4279

4280
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4281 4282 4283

            h_t & = o_t tanh(c_t)

4284 4285 4286 4287 4288 4289
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4290 4291 4292

        .. math::

4293
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4294 4295 4296 4297 4298 4299 4300 4301

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4302
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4303 4304

    Args:
Y
yangyaming 已提交
4305 4306 4307 4308 4309 4310
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4311
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4324 4325
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4326 4327

    Returns:
Y
yangyaming 已提交
4328
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4329 4330

    Raises:
4331 4332 4333 4334
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4335 4336 4337 4338 4339 4340

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4341
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4342
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4343
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4360
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4361 4362 4363 4364
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4365 4366
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4367 4368 4369
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4370
    size = cell_t_prev.shape[1]
4371
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4372 4373
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4374
                param_attr=param_attr,
4375
                bias_attr=bias_attr)
Y
yangyaming 已提交
4376
    dtype = x_t.dtype
X
Xin Pan 已提交
4377 4378
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4379 4380 4381 4382 4383 4384 4385 4386 4387

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4388
    return h, c
G
guosheng 已提交
4389 4390


C
caoying03 已提交
4391
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4392
    """
Y
yangyaming 已提交
4393
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4394 4395 4396

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4397
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4398 4399
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4400 4401
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4402
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4403
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4404
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4405 4406
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4407 4408 4409

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4410

G
guosheng 已提交
4411 4412 4413 4414 4415 4416
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4417
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4418 4419 4420 4421
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4422 4423 4424 4425

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4426
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4427 4428 4429
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4430 4431
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4432
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4433 4434
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4435 4436 4437 4438 4439
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4440
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4441 4442 4443 4444
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4445 4446


C
caoying03 已提交
4447
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4448
    """
Y
Yibing Liu 已提交
4449
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4450 4451 4452

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4453 4454 4455
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4456
            must be in the range :math:`[-rank(input), rank(input))`. If
4457
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4458
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4459 4460
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4461
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4462
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4463
                       will be named automatically.
G
guosheng 已提交
4464 4465

    Returns:
Y
Yibing Liu 已提交
4466
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4467

G
guosheng 已提交
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4478 4479
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4480 4481 4482 4483 4484 4485 4486

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4487 4488
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4489
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4490 4491
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4492 4493 4494 4495 4496
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4497
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4498 4499 4500 4501
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4502 4503


C
caoying03 已提交
4504
def reduce_max(input, dim=None, keep_dim=False, name=None):
4505
    """
Y
yangyaming 已提交
4506
    Computes the maximum of tensor elements over the given dimension.
4507 4508 4509

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4510
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4511 4512 4513
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4514
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4515 4516
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4517
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4518 4519
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4520 4521 4522

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4523

4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4535 4536 4537 4538 4539 4540 4541

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4542 4543
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4544
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4545 4546
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4547 4548 4549 4550 4551
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4552
            'dim': dim if dim != None else [0],
4553 4554 4555 4556 4557 4558
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4559
def reduce_min(input, dim=None, keep_dim=False, name=None):
4560
    """
Y
yangyaming 已提交
4561
    Computes the minimum of tensor elements over the given dimension.
4562 4563 4564

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4565
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4566 4567 4568
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4569
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4570 4571
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4572
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4573 4574
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4575 4576 4577

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4578

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4590 4591 4592 4593 4594 4595 4596

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4597 4598
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4599
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4600 4601
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4602 4603 4604 4605 4606
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4607
            'dim': dim if dim != None else [0],
4608 4609 4610 4611
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4612 4613


4614 4615 4616 4617 4618 4619
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4620
        dim (list|int|None): The dimensions along which the product is performed. If
4621 4622
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4623 4624
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4625 4626 4627
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4628
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4629
            layer will be named automatically.
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4644
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4645
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4646 4647 4648 4649 4650 4651 4652

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4653 4654
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4655
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4656 4657
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4658 4659 4660 4661 4662
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4663
            'dim': dim if dim != None else [0],
4664 4665 4666 4667 4668 4669
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4670
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4671
    """
C
caoying03 已提交
4672
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4673 4674 4675

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4676 4677 4678 4679 4680
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4681
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4682
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4683
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4684 4685
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4686 4687

    Returns:
D
dzhwinter 已提交
4688
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4689 4690 4691 4692 4693 4694 4695 4696 4697

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4698 4699
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4715
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4729 4730 4731 4732 4733 4734 4735 4736 4737


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4738
    .. math::
4739 4740

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4741 4742 4743 4744 4745

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4746
        x(Variable|list): The input tensor to l2_normalize layer.
4747
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4748 4749
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4750
        epsilon(float): The epsilon value is used to avoid division by zero, \
4751
            the defalut value is 1e-10.
4752
        name(str|None): A name for this layer(optional). If set None, the layer \
4753
            will be named automatically.
C
caoying03 已提交
4754 4755

    Returns:
4756
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4757 4758

    Examples:
4759

C
caoying03 已提交
4760 4761
        .. code-block:: python

4762 4763 4764 4765
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4766 4767
    """

F
fengjiayi 已提交
4768 4769
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4770 4771
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4772 4773
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4774
    helper.append_op(
4775 4776 4777 4778
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4779
        attrs={
4780 4781
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4782 4783
        })
    return out
4784 4785


S
sneaxiy 已提交
4786
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4787
    """
Y
ying 已提交
4788 4789 4790 4791
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4792

C
chengduoZH 已提交
4793
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4794
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4795

4796 4797 4798 4799 4800
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4801
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4802

C
chengduoZH 已提交
4803
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4804
      performs in the following way.
G
guosheng 已提交
4805

4806
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4807
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4808
        last two dimensions and a batched matrix multiply supporting broadcast
4809
        applies on the two tensors.
G
guosheng 已提交
4810

Y
ying 已提交
4811 4812
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4813
    removed after matrix multiplication.
G
guosheng 已提交
4814 4815 4816

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4817 4818 4819
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4820
        alpha (float): The scale of output. Default 1.0.
4821
        name(str|None): A name for this layer(optional). If set None, the layer
4822
            will be named automatically.
G
guosheng 已提交
4823 4824

    Returns:
4825
        Variable: The product Tensor variable.
G
guosheng 已提交
4826

G
guosheng 已提交
4827 4828 4829
    Examples:
        .. code-block:: python

4830
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4831 4832
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4833

4834 4835
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4836

4837 4838
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4839

4840 4841
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4842 4843 4844 4845

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4846 4847
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4848

Y
ying 已提交
4849
            # x: [M], y: [N]
4850
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4851
    """
Y
ying 已提交
4852 4853 4854 4855 4856 4857 4858

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4859
            y_shape = y_shape + [1]
Y
ying 已提交
4860 4861 4862 4863 4864 4865 4866 4867 4868

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

C
chengduo 已提交
4869
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4870 4871
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
C
chengduo 已提交
4872 4873
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
4874 4875 4876

    __check_input(x, y)

4877
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4878
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4879
    helper.append_op(
4880 4881 4882 4883
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4884 4885 4886
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4887
            'alpha': float(alpha),
S
sneaxiy 已提交
4888
        })
4889
    return out
4890 4891


4892
def topk(input, k, name=None):
Q
qingqing01 已提交
4893 4894 4895 4896
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4897
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4898 4899 4900 4901 4902 4903
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4925 4926 4927
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4928
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4929
                 of input.
4930
        name(str|None): A name for this layer(optional). If set None, the layer
4931
                       will be named automatically.
F
fengjiayi 已提交
4932
                       Default: None
Q
qingqing01 已提交
4933 4934

    Returns:
4935 4936 4937
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4938
        within the last dimension of input.
Q
qingqing01 已提交
4939

F
fengjiayi 已提交
4940 4941
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4942 4943 4944 4945 4946 4947 4948

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4949 4950
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4951 4952 4953 4954 4955 4956
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4957 4958
    helper.append_op(
        type="top_k",
W
whs 已提交
4959
        inputs=inputs,
Q
qingqing01 已提交
4960 4961
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4962
        attrs=attrs)
Q
qingqing01 已提交
4963 4964 4965 4966 4967
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4968
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4969
    """
Y
ying 已提交
4970 4971 4972 4973 4974 4975 4976 4977 4978
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4979

Y
ying 已提交
4980
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4981

4982
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4983 4984
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4985
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4986

4987
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4988 4989
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4990

4991 4992 4993
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4994
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4995
                          the length of reference string.
4996
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4997
                                     calculating edit distance.
4998
        name (str): The name of this layer. It is optional.
4999

W
wanghaoshuang 已提交
5000
    Returns:
W
wanghaoshuang 已提交
5001
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5002 5003 5004 5005

    Examples:
        .. code-block:: python

T
tink2123 已提交
5006 5007
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5008
            cost = fluid.layers.edit_distance(input=x,label=y)
5009
    """
5010
    helper = LayerHelper("edit_distance", **locals())
5011

5012
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5013
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5014 5015
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5016 5017 5018 5019 5020

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5021
            attrs={"tokens": ignored_tokens})
5022 5023 5024 5025 5026
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5027
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5028
            attrs={"tokens": ignored_tokens})
5029 5030
        label = erased_label

5031
    # edit distance op
X
Xin Pan 已提交
5032 5033
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5034 5035 5036 5037
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5038 5039
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5040 5041
        attrs={"normalized": normalized})

5042
    return edit_distance_out, sequence_num
5043 5044 5045 5046 5047


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5048

Y
ying 已提交
5049 5050 5051 5052
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5070
        input.lod = [[4, 4]]
M
minqiyang 已提交
5071

W
whs 已提交
5072
        Computation:
5073

W
whs 已提交
5074 5075 5076 5077 5078 5079
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5080 5081 5082 5083 5084

        output.data = [[2],
                       [1],
                       [3]]

5085
        output.lod = [[2, 1]]
5086

W
whs 已提交
5087

5088 5089
    Args:

Y
ying 已提交
5090 5091 5092 5093 5094 5095 5096 5097 5098
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5099
        name (str): The name of this layer. It is optional.
5100 5101

    Returns:
H
haowang101779990 已提交
5102 5103 5104
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5105
                  LoD [[]] and dims [1, 1].
5106 5107 5108 5109 5110

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5111

5112
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5113
    """
5114
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5115
    _, topk_indices = topk(input, k=1)
5116 5117

    # ctc align op
X
Xin Pan 已提交
5118
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5119 5120 5121
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5122
        outputs={"Output": [ctc_out]},
5123 5124
        attrs={"merge_repeated": True,
               "blank": blank})
5125
    return ctc_out
5126 5127


W
Wu Yi 已提交
5128
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5129
    """
5130 5131
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5132
    to compute Connectionist Temporal Classification (CTC) loss.
5133 5134
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5135 5136 5137
    input tensor.

    Args:
5138
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5139 5140 5141 5142
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5143
       label (Variable): The ground truth of variable-length sequence,
5144 5145 5146
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5147 5148
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5149 5150 5151
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5152
         follewed by a mean_op.
W
Wu Yi 已提交
5153
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5154 5155

    Returns:
5156 5157
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5158 5159

    Examples:
5160

W
wanghaoshuang 已提交
5161
        .. code-block:: python
5162

5163 5164 5165
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5166 5167

    """
F
fengjiayi 已提交
5168
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5169 5170
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5171 5172 5173 5174 5175 5176
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5177 5178 5179 5180 5181
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5182
    return loss_out
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5198 5199 5200
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5201 5202 5203 5204 5205
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5206

5207
            out.lod  = [[0, 1, 3]]
5208 5209 5210 5211

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5212 5213 5214 5215 5216 5217 5218
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5219 5220 5221

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5222 5223

    Returns:
5224

5225 5226 5227 5228 5229
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5230
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5231
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5232 5233
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5234
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5235 5236 5237 5238 5239 5240
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5241 5242


5243 5244 5245 5246
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5247 5248 5249 5250 5251 5252
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5253
        num_neg_samples=None,
5254 5255 5256
        name=None,
        sampler="uniform",
        custom_dist=None,
5257 5258
        seed=0,
        is_sparse=False):
5259 5260 5261 5262 5263 5264 5265
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5266 5267
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5268
            sample is 1.0.
C
chengduo 已提交
5269 5270 5271 5272 5273 5274 5275 5276 5277
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5278
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5279 5280
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5281 5282 5283
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5284
        custom_dist (float[]): A float[] with size=num_total_classes.
5285 5286 5287 5288
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5289
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5290

5291
    Returns:
Y
Yibing Liu 已提交
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5319 5320 5321 5322 5323 5324 5325 5326 5327

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5328

5329
    """
Y
Yang Yu 已提交
5330 5331 5332
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5333 5334

    dim = input.shape[1]
Y
Yang Yu 已提交
5335 5336 5337 5338 5339 5340
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5341
    inputs = {}
C
chengduo 已提交
5342 5343 5344 5345 5346 5347 5348
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5349 5350 5351
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5352

5353 5354 5355 5356
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5357 5358 5359 5360 5361 5362 5363

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5364 5365 5366 5367 5368 5369 5370 5371 5372
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5373
            if normal_prob - 1.0 > 0:
5374
                bigs.append((i, normal_prob))
5375
            elif 1.0 - normal_prob > 0:
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5391
            if big_left - 1.0 > 0:
5392
                bigs.append((big_idx, big_left))
5393
            elif 1.0 - big_left > 0:
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5423 5424 5425 5426
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5427 5428 5429 5430 5431
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5432 5433 5434 5435
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5436

Y
Yang Yu 已提交
5437 5438
    attrs = {
        'num_total_classes': int(num_total_classes),
5439 5440
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5441
        'sampler': sampler,
5442 5443
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5444
    }
Y
Yang Yu 已提交
5445 5446 5447

    helper.append_op(
        type='nce',
C
chengduo 已提交
5448
        inputs=inputs,
Y
Yang Yu 已提交
5449 5450 5451 5452 5453 5454
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5455
    return cost / (num_neg_samples + 1)
5456 5457


C
chengduo 已提交
5458 5459
def hsigmoid(input,
             label,
5460
             num_classes,
C
chengduo 已提交
5461 5462
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5463
             name=None,
5464 5465 5466
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5467
             is_sparse=False):
W
weixing02 已提交
5468 5469
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5470
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5471
    complete binary tree, or you can use is_custom to pass your own tree to
5472
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5473 5474 5475 5476 5477 5478
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5479
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5480
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5481

5482 5483
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5484 5485 5486 5487
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5488
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5489
       related to the same batch of inputs.
5490

W
weixing02 已提交
5491
    Args:
M
minqiyang 已提交
5492
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5493 5494 5495 5496
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5497 5498
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5499
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5511
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5512
            it should be in leaf -> root order
M
minqiyang 已提交
5513 5514 5515
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5516
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5517
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5518
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5519
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5520
             of W and input will be sparse.
W
weixing02 已提交
5521 5522

    Returns:
J
JiabinYang 已提交
5523
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5524 5525 5526 5527 5528

    Examples:

        .. code-block:: python

G
guosheng 已提交
5529 5530 5531
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5532 5533 5534 5535
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5536 5537
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5538
    dim = input.shape[1]
5539
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5540 5541 5542
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5543 5544 5545 5546
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5547 5548
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5549 5550 5551
    else:
        pass

J
JiabinYang 已提交
5552
    weights = None
5553 5554 5555 5556
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5557
    if not is_custom:
J
JiabinYang 已提交
5558 5559 5560 5561 5562 5563 5564 5565
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5566
            shape=[num_classes, dim],
J
JiabinYang 已提交
5567 5568
            is_bias=False,
            dtype=input.dtype)
5569 5570 5571
    inputs = {
        "X": input,
        "W": weights,
5572
        "PathTable": path_table,
5573
        "PathCode": path_code,
5574 5575
        "Label": label
    }
W
weixing02 已提交
5576
    if helper.bias_attr:
5577
        if not is_custom:
J
JiabinYang 已提交
5578 5579
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5580
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5581 5582 5583 5584 5585 5586
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5587
                shape=[num_classes, 1],
J
JiabinYang 已提交
5588 5589 5590
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5591 5592
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5593
        inputs=inputs,
W
weixing02 已提交
5594
        outputs={"Out": out,
5595 5596 5597 5598 5599 5600 5601
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5602 5603 5604
    return out


Y
fix ci.  
ying 已提交
5605
def transpose(x, perm, name=None):
Y
ying 已提交
5606 5607 5608 5609 5610 5611 5612
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5613 5614 5615
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5616 5617 5618 5619 5620 5621 5622

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5623
            # use append_batch_size=False to avoid prepending extra
5624
            # batch size in shape
5625
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5626
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5627
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5628 5629
    """

Y
fix ci.  
ying 已提交
5630
    if len(perm) != len(x.shape):
Y
ying 已提交
5631 5632 5633
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5634 5635 5636 5637 5638 5639
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5640 5641

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5642 5643
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5644
    helper.append_op(
5645
        type='transpose2',
Y
fix ci.  
ying 已提交
5646
        inputs={'X': [x]},
5647 5648
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5649 5650
        attrs={'axis': perm})
    return out
5651 5652


5653 5654 5655 5656 5657 5658 5659
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5660
    """
5661 5662 5663 5664 5665 5666 5667
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5696 5697 5698 5699 5700 5701 5702 5703 5704
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5705 5706 5707
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5708 5709 5710 5711 5712
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5740 5741 5742
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5755
            output.dims = {8, 8}
5756

5757
            output.lod = [[4, 4]]
5758

T
Tink_Y 已提交
5759
    Examples:
5760 5761 5762

        .. code-block:: python

5763 5764
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5765 5766

    """
W
wanghaoshuang 已提交
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5777 5778 5779 5780 5781 5782 5783
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5784
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5785
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5786
    helper.append_op(
5787
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5788
    return out
5789 5790


Y
yuyang18 已提交
5791
@templatedoc()
5792
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5793 5794
    """
    ${comment}
5795 5796

    Args:
Y
yuyang18 已提交
5797
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5798 5799
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5800 5801 5802 5803 5804
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5805
        ${out_comment}.
5806 5807

    Examples:
Y
yuyang18 已提交
5808 5809 5810 5811
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5812 5813 5814 5815 5816 5817
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5818
    out = helper.create_variable_for_type_inference(dtype)
5819 5820 5821 5822 5823
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5824
    return helper.append_activation(out)
5825 5826


Y
yuyang18 已提交
5827
@templatedoc()
5828 5829
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5830 5831 5832 5833 5834 5835 5836
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5837 5838

    Args:
Y
yuyang18 已提交
5839 5840
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5841 5842

    Returns:
Y
yuyang18 已提交
5843
        ${out_comment}.
5844 5845
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5846 5847 5848 5849 5850

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5851
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5852 5853 5854 5855 5856 5857
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5858 5859


5860 5861 5862
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5863
                               ignore_index=kIgnoreIndex,
5864
                               numeric_stable_mode=True,
5865
                               return_softmax=False):
5866 5867
    """
    **Softmax With Cross Entropy Operator.**
5868

5869 5870 5871 5872
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5873

5874 5875 5876
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5877

5878 5879 5880
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5881

5882
    The equation is as follows:
5883

5884
    1) Hard label (one-hot label, so every sample has exactly one class)
5885

5886 5887 5888 5889
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5890

5891 5892 5893
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5894

5895 5896 5897 5898
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5899 5900 5901
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5902

H
haowang101779990 已提交
5903
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5904

H
haowang101779990 已提交
5905
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5906

H
haowang101779990 已提交
5907
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5908 5909 5910

    and then cross entropy loss is calculated by softmax and label.

5911 5912 5913 5914 5915 5916 5917 5918
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5919 5920
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5921
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5922 5923 5924
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5925 5926 5927
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
5928
                                    stable algorithm. Default: True
5929
        return_softmax (bool): A flag indicating whether to return the softmax
5930
                               along with the cross entropy loss. Default: False
5931

5932
    Returns:
H
haowang101779990 已提交
5933 5934 5935 5936 5937
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5938 5939 5940 5941 5942 5943 5944

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5945 5946
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5947 5948
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5949 5950
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5951 5952 5953 5954 5955 5956
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5957 5958 5959 5960 5961
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5962 5963 5964 5965

    if return_softmax:
        return loss, softmax

5966 5967 5968
    return loss


5969 5970 5971
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
5972
                                       num_true=1,
5973
                                       remove_accidental_hits=True,
X
xuezhong 已提交
5974 5975 5976
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
5977
                                       seed=0):
X
xuezhong 已提交
5978 5979 5980 5981 5982
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
5983
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
5984 5985 5986 5987 5988 5989 5990 5991
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
5992
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
5993 5994 5995 5996 5997 5998 5999 6000
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6001
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6013
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6014 6015 6016 6017 6018
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6019
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6020
            logits.
X
xuezhong 已提交
6021 6022 6023 6024 6025
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6026 6027 6028
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6049 6050
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
6051 6052 6053 6054 6055

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6056
            'Labels': label,
X
xuezhong 已提交
6057 6058
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6059 6060 6061 6062
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6063
            'SampledLabels': sampled_label,
X
xuezhong 已提交
6064 6065 6066
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
6067
            'use_customized_samples': use_customized_samples,
6068
            'uniq': True,
X
xuezhong 已提交
6069 6070 6071 6072
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6073 6074
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6075 6076 6077 6078 6079 6080
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6081 6082
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6083
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6084
                'Label': sampled_softlabel},
X
xuezhong 已提交
6085 6086 6087
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6088
            'soft_label': True,
X
xuezhong 已提交
6089 6090 6091
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6092
    return loss / num_true
X
xuezhong 已提交
6093 6094


6095 6096
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6097 6098
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6099
    For each instance, it computes the smooth L1 loss element by element first
6100
    and then sums all the losses. So the shape of ouput Variable is
6101
    [batch_size, 1].
6102

6103 6104
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6105
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6106
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6107
            L1 loss op with same shape as :attr:`x`.
6108
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6109 6110
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6111
            by this tensor element by element.
6112
        outside_weight (Variable|None): A tensor with rank at least 2. This
6113 6114
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6115
            element by element.
6116
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6117 6118
           scalar with default value 1.0.

6119
    Returns:
6120
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6121 6122 6123 6124 6125

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6126 6127
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6128
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6129
            out = fluid.layers.smooth_l1(x=fc, y=label)
6130
    """
6131

6132
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6133 6134
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
6147 6148 6149 6150


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6151
    This layer creates the one-hot representations for input indices.
6152 6153

    Args:
Y
Yibing Liu 已提交
6154 6155
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6156 6157

    Returns:
Y
Yibing Liu 已提交
6158
        Variable: The one-hot representations of input.
6159 6160

    Examples:
C
caoying03 已提交
6161
        .. code-block:: python
6162

Y
Yibing Liu 已提交
6163 6164
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6165 6166
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6167
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6168 6169 6170 6171 6172 6173
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
6174 6175


Y
Yu Yang 已提交
6176
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6177
    """
Y
yi.wu 已提交
6178 6179 6180
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6181 6182 6183 6184 6185 6186

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6187 6188
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6189 6190 6191 6192 6193 6194

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6195 6196
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6197 6198
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6199 6200 6201 6202 6203
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6204
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6205
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6206 6207
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6208
            outputs={'Out': [counter]},
M
minqiyang 已提交
6209 6210
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6211 6212 6213
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6214 6215


6216
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6217
    """
C
caoying03 已提交
6218 6219
    Gives a new shape to the input Tensor without changing its data.

6220 6221 6222 6223 6224
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6225

6226
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6227

6228 6229 6230 6231
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6232
    2. 0 means the actual dimension value is going to be copied from the
6233 6234 6235 6236
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6237 6238

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6239
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6240
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6241

6242
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6243 6244
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6245 6246
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6247
    dimensions.
C
caoying03 已提交
6248

6249
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6250 6251 6252 6253
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6254 6255

    Args:
6256
        x(variable): The input tensor.
C
caoying03 已提交
6257 6258
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6259 6260 6261 6262 6263
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6264 6265
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6266 6267 6268
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6269
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6270
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6271

6272
    Returns:
G
guosheng 已提交
6273 6274 6275 6276
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6277

X
Xin Pan 已提交
6278 6279 6280
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6281 6282
    Examples:
        .. code-block:: python
G
guosheng 已提交
6283

6284
            data = fluid.layers.data(
6285
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6286
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6287
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6288 6289 6290
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6291
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6292 6293 6294 6295 6296
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6297

6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6313
    helper = LayerHelper("reshape2", **locals())
6314 6315
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6316
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6317
    helper.append_op(
6318
        type="reshape2",
X
Xin Pan 已提交
6319
        inputs=inputs,
D
dzhwinter 已提交
6320
        attrs={"shape": shape},
6321 6322
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6323

D
dzhwinter 已提交
6324
    return helper.append_activation(out)
6325

6326

6327
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6328
    """
M
minqiyang 已提交
6329 6330 6331
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6332
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6333

H
haowang101779990 已提交
6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6355

Y
Yibing Liu 已提交
6356
    Args:
6357
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6358
        axes (list): List of integers, indicating the dimensions to be squeezed.
6359
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6360 6361 6362 6363 6364 6365 6366 6367

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6368
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6369 6370
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6371 6372
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6373
    helper.append_op(
6374
        type="squeeze2",
6375
        inputs={"X": input},
Y
Yibing Liu 已提交
6376
        attrs={"axes": axes},
6377 6378
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6379

6380 6381 6382
    return out


6383
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6384
    """
M
minqiyang 已提交
6385 6386 6387
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6388

M
minqiyang 已提交
6389
    For example:
H
haowang101779990 已提交
6390 6391 6392

    .. code-block:: text

M
minqiyang 已提交
6393
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6394
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6395

Y
Yibing Liu 已提交
6396
    Args:
6397
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6398
        axes (list): List of integers, indicating the dimensions to be inserted.
6399
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6400 6401 6402 6403 6404 6405 6406 6407

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6408
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6409 6410
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6411 6412
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6413
    helper.append_op(
6414
        type="unsqueeze2",
6415
        inputs={"X": input},
Y
Yibing Liu 已提交
6416
        attrs={"axes": axes},
6417 6418
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6419

6420 6421
    return out

6422

Y
yangyaming 已提交
6423
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6424
    """
Y
Yibing Liu 已提交
6425
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6426 6427 6428 6429
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6430
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6431 6432 6433 6434 6435 6436

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6437
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6438 6439 6440
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6441
            target_lod: [4, 2]
Y
yangyaming 已提交
6442 6443

            then we get a 1-level LoDTensor:
6444
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6445 6446 6447 6448 6449 6450
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6451
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6452 6453 6454 6455
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6456
                y.data = [[2, 4]]
Y
yangyaming 已提交
6457 6458 6459
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6460
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6461 6462 6463 6464 6465 6466
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6467
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6468 6469 6470 6471
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6472
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6473 6474 6475 6476
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6477
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6478 6479 6480 6481 6482
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6483
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6484
                           from :attr:`y`.
Y
yangyaming 已提交
6485
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6486
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6487 6488

    Returns:
Y
Yibing Liu 已提交
6489
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6490 6491

    Raises:
Y
Yibing Liu 已提交
6492
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6493 6494 6495 6496 6497 6498 6499 6500 6501

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6502
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6528
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6557 6558
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6571 6572 6573
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6587 6588 6589 6590


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6591
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6592
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6593

G
guosheng 已提交
6594 6595 6596 6597
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6620
                         The length of :attr:paddings must be
G
guosheng 已提交
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6631

G
guosheng 已提交
6632 6633 6634 6635 6636 6637
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6638
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6639 6640 6641 6642 6643 6644 6645
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6646 6647


C
chengduo 已提交
6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6679 6680
		And
            pad_value = -1,
C
chengduo 已提交
6681

T
Tink_Y 已提交
6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6717
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6718 6719 6720 6721 6722 6723 6724 6725 6726
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6727 6728 6729 6730 6731 6732 6733
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6734 6735
    called label-smoothing regularization (LSR).

6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6759
                              be :math:`(1, class\_num)`.
6760 6761
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6762
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6782
    smooth_label = helper.create_variable_for_type_inference(dtype)
6783 6784 6785 6786 6787 6788 6789
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6790 6791


W
wopeizl 已提交
6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6828 6829


J
jerrywgz 已提交
6830 6831 6832 6833 6834 6835
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6836 6837
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6854 6855 6856
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6857 6858 6859 6860 6861 6862
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6863
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6904 6905
        .. code-block:: python

W
whs 已提交
6906 6907 6908 6909
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6910
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6911 6912 6913 6914 6915 6916
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6917 6918


6919 6920 6921 6922
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6923
                 resample='BILINEAR',
6924 6925
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6926
                 align_mode=1):
6927
    """
Q
qiaolongfei 已提交
6928
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6929

6930
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6931 6932 6933
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6934

6935
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6936

6937
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6938

6939 6940 6941 6942 6943 6944 6945 6946 6947 6948
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6949
    Align_corners and align_mode are optinal parameters,the calculation method 
6950 6951 6952 6953
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6954
    .. code-block:: text
6955

T
Tink_Y 已提交
6956
        For scale:
6957
          
T
Tink_Y 已提交
6958
            if align_corners = True && out_size > 1 :
6959

T
Tink_Y 已提交
6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
6971

T
Tink_Y 已提交
6972 6973
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6974

T
Tink_Y 已提交
6975 6976
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
6977

T
Tink_Y 已提交
6978 6979
          else:
              align_corners = True
6980

T
Tink_Y 已提交
6981 6982
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6983

T
Tink_Y 已提交
6984 6985
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
6986

T
Tink_Y 已提交
6987 6988 6989 6990 6991 6992 6993 6994 6995 6996
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6997

T
Tink_Y 已提交
6998 6999 7000 7001
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7002

T
Tink_Y 已提交
7003 7004
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7005 7006 7007 7008 7009 7010 7011 7012 7013

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7014
    Args:
7015
        input (Variable): The input tensor of image resize layer,
7016 7017
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7018
        out_shape(list|tuple|Variable|None): Output shape of image resize
7019 7020
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
7021
        scale(float|None): The multiplier for the input height or width.
7022 7023 7024
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
7025 7026
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7027
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7028
                       currently.
7029
                       Default: 'BILINEAR'
7030 7031 7032
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7033
                                :attr:`out_shape` and :attr:`scale` specifying
7034 7035 7036 7037 7038 7039 7040
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7041 7042
                                constructing stage.
                                Default: None
7043 7044 7045 7046
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7047
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7048 7049
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7050 7051

    Returns:
Q
update  
qiaolongfei 已提交
7052 7053
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7054

7055 7056 7057
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7058
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7059 7060 7061
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7062 7063
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7064

7065 7066 7067
    Examples:
        .. code-block:: python

7068
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7069
    """
7070 7071 7072 7073
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7074 7075
    if resample not in resample_methods:
        raise ValueError(
7076
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7077
        )
7078
    resample_type = resample_methods[resample]
7079 7080 7081 7082 7083 7084

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7085
    if out_shape is None and scale is None:
7086
        raise ValueError("One of out_shape and scale must not be None.")
7087
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7088
    dtype = helper.input_dtype()
7089 7090 7091 7092

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7093 7094 7095
    out_h = 0
    out_w = 0
    inputs = {"X": input}
7096
    if out_shape is not None:
7097 7098 7099 7100
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7101
            inputs['OutSize'] = out_shape
7102 7103 7104 7105 7106 7107 7108 7109
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7110 7111 7112 7113
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7114 7115 7116 7117 7118
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7119
    out = helper.create_variable_for_type_inference(dtype)
7120
    helper.append_op(
7121
        type='{}_interp'.format(resample_type),
7122
        inputs=inputs,
7123
        outputs={"Out": out},
7124 7125 7126 7127 7128 7129 7130
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7131
    return out
F
stash  
fengjiayi 已提交
7132 7133


7134
@templatedoc(op_type="bilinear_interp")
7135 7136 7137 7138
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7139 7140
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7141
                    align_mode=1):
7142
    """
7143 7144
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7145 7146
    in priority order.

7147 7148 7149 7150
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7151 7152
    again in the other direction.

7153
    For details of bilinear interpolation, please refer to Wikipedia:
7154
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7155

T
tink2123 已提交
7156
    Align_corners and align_mode are optinal parameters,the calculation 
7157 7158 7159 7160
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7161
    .. code-block:: text
7162

T
Tink_Y 已提交
7163
        For scale:
7164
          
T
Tink_Y 已提交
7165
            if align_corners = True && out_size > 1 :
7166

T
Tink_Y 已提交
7167 7168 7169 7170 7171
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7172

T
Tink_Y 已提交
7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7183 7184


T
Tink_Y 已提交
7185
          else:
T
tink2123 已提交
7186

T
Tink_Y 已提交
7187 7188
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7189

T
Tink_Y 已提交
7190 7191
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7192 7193 7194



Y
yuyang18 已提交
7195 7196 7197 7198
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7199

Y
yuyang18 已提交
7200 7201 7202 7203 7204
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7205 7206 7207
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7208
                                :attr:`out_shape` and :attr:`scale` specifying
7209 7210 7211 7212 7213 7214 7215
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7216 7217
                                constructing stage.
                                Default: None
7218 7219
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7220 7221 7222

    Returns:
        ${out_comment}.
7223 7224 7225 7226 7227

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7228 7229
    """

7230 7231
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7232 7233


7234
@templatedoc(op_type="nearest_interp")
7235 7236 7237 7238
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7239 7240
                   actual_shape=None,
                   align_corners=True):
7241
    """
7242
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7243 7244
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7245 7246
    out_shape and scale in priority order.

7247 7248
    Example:

T
Tink_Y 已提交
7249 7250 7251 7252 7253
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7254

T
Tink_Y 已提交
7255 7256 7257 7258 7259 7260 7261 7262
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7263
          
T
Tink_Y 已提交
7264 7265
          if:
              align_corners = False
7266

T
Tink_Y 已提交
7267 7268
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7269

T
Tink_Y 已提交
7270 7271
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7272

T
Tink_Y 已提交
7273 7274
          else:
              align_corners = True
7275

T
Tink_Y 已提交
7276 7277
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7278

T
Tink_Y 已提交
7279 7280
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7281 7282


7283
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7284
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7285 7286 7287 7288 7289

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7290

Y
yuyang18 已提交
7291 7292 7293 7294 7295
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7296 7297 7298
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7299
                                :attr:`out_shape` and :attr:`scale` specifying
7300 7301 7302 7303 7304 7305 7306
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7307 7308
                                constructing stage.
                                Default: None
7309
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7310 7311 7312

    Returns:
        ${out_comment}.
7313 7314 7315 7316 7317

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7318 7319
    """

7320 7321
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7322 7323 7324 7325


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7326 7327 7328
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7329 7330 7331 7332 7333 7334 7335
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7336
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7337

7338
    Returns:
Q
update  
qiaolongfei 已提交
7339
        Variable: The output is a 4-D tensor of the shape
7340
        (num_batches, channls, out_h, out_w).
7341 7342 7343 7344 7345 7346 7347 7348 7349 7350
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7351 7352 7353
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7354 7355 7356
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7357 7358
def gather(input, index):
    """
Q
qiaolongfei 已提交
7359 7360
    **Gather Layer**

7361
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7362 7363 7364 7365
    of X indexed by `index` and concatenate them together.

    .. math::

7366
        Out = X[Index]
W
whs 已提交
7367 7368 7369 7370 7371 7372 7373


    .. code-block:: text


                Given:

7374 7375
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7376 7377 7378 7379 7380 7381 7382 7383 7384 7385
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7386
        input (Variable): The source input with rank>=1.
W
whs 已提交
7387 7388 7389 7390 7391 7392
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7393

W
whs 已提交
7394 7395 7396 7397 7398 7399
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7400
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7401 7402 7403 7404 7405 7406 7407 7408
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7440
    out = helper.create_variable_for_type_inference(dtype)
7441 7442 7443 7444 7445 7446 7447 7448 7449
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7450 7451 7452 7453 7454 7455 7456 7457 7458
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7459

Q
Qingsheng Li 已提交
7460
    Given the following input:
H
haowang101779990 已提交
7461

Q
Qingsheng Li 已提交
7462
    .. code-block:: text
H
haowang101779990 已提交
7463

Q
Qingsheng Li 已提交
7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7476

Q
Qingsheng Li 已提交
7477
    .. code-block:: text
H
haowang101779990 已提交
7478

Q
Qingsheng Li 已提交
7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7494
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7495 7496 7497 7498 7499 7500 7501 7502 7503 7504

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7505
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7506 7507 7508 7509 7510 7511 7512 7513 7514
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7528

7529 7530 7531
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7532
    """
F
stash  
fengjiayi 已提交
7533
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7534
    dtype = x.dtype
X
Xin Pan 已提交
7535
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7536
    if seed is None:
7537
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7538
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7539
    if isinstance(seed, int):
F
fengjiayi 已提交
7540 7541 7542 7543 7544
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7545 7546 7547 7548
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7549
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7550 7551
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7552 7553
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7554
    return out
W
whs 已提交
7555 7556


7557
def log(x, name=None):
W
wanghaoshuang 已提交
7558 7559 7560 7561 7562
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7563
        Out = \\ln(x)
W
wanghaoshuang 已提交
7564 7565

    Args:
7566
        x (Variable): Input tensor.
7567 7568
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7569 7570 7571 7572 7573 7574 7575 7576

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7577
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7578 7579
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7580
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7581
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7582
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7583 7584 7585
    return out


7586
def relu(x, name=None):
W
wanghaoshuang 已提交
7587 7588
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7589
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7590 7591 7592 7593
    the tensor elementwise.

    .. math::

7594
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7595 7596

    Args:
7597
        x (Variable): The input tensor.
7598 7599
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7600 7601 7602 7603 7604 7605 7606 7607

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7608
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7609 7610
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7611
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7612
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7613 7614
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7615
    return out
7616 7617


C
chengduo 已提交
7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7659 7660 7661
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7662 7663 7664 7665
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7666
    .. math::
7667

H
haowang101779990 已提交
7668
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7669

7670
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7671 7672 7673 7674 7675
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7676
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7677
                           Its shape should be the same as input.
7678
        num_classes (int): The possible number of labels.
W
whs 已提交
7679 7680

    Returns:
M
minqiyang 已提交
7681 7682
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7683
                     Three variables:
M
minqiyang 已提交
7684

H
haowang101779990 已提交
7685 7686 7687
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7688 7689 7690 7691

    Examples:

        .. code-block:: python
7692

W
whs 已提交
7693 7694 7695 7696
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7697 7698 7699
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7700 7701
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7702 7703
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7704
        outputs={
W
whs 已提交
7705 7706 7707
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7708 7709 7710
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7779
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7780 7781 7782 7783 7784

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7785
            isinstance(shape, Variable)):
7786 7787 7788 7789 7790
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7791
    out = helper.create_variable_for_type_inference(x.dtype)
7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7809 7810


W
whs 已提交
7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7828

W
whs 已提交
7829
              out_shape = [2, 3, 5, 5]
7830

W
whs 已提交
7831
          Step 1:
7832

W
whs 已提交
7833 7834 7835
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7836

W
whs 已提交
7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7882
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7883
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7896

W
whs 已提交
7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7908
            isinstance(out_shape, Variable)):
W
whs 已提交
7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7930 7931
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7932

7933 7934
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7935
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7936 7937 7938
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7939

7940 7941
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7942

H
haowang101779990 已提交
7943 7944
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7945 7946
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7947

H
haowang101779990 已提交
7948 7949 7950 7951 7952 7953 7954 7955
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7956 7957 7958

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7993
    out = helper.create_variable_for_type_inference("float32")
7994 7995 7996 7997 7998 7999 8000 8001

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8002 8003


M
minqiyang 已提交
8004 8005
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8006
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8007
    which compares left score and right score passed in.
M
minqiyang 已提交
8008
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8009 8010 8011

    .. math::

H
haowang101779990 已提交
8012
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8013 8014

    Args:
M
minqiyang 已提交
8015
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8016 8017
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8018
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8019 8020
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8021

M
minqiyang 已提交
8022
    Returns:
M
minqiyang 已提交
8023
       Variable: The ranking loss.
H
haowang101779990 已提交
8024

M
minqiyang 已提交
8025
    Raises:
M
minqiyang 已提交
8026
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8027

M
minqiyang 已提交
8028
    Examples:
H
haowang101779990 已提交
8029

M
minqiyang 已提交
8030
        .. code-block:: python
H
haowang101779990 已提交
8031

M
minqiyang 已提交
8032 8033 8034 8035 8036
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8037
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8038 8039 8040 8041 8042 8043
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8044 8045
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8069
        .. code-block:: text
W
whs 已提交
8070

T
Tink_Y 已提交
8071
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8072

T
Tink_Y 已提交
8073 8074
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8075

T
Tink_Y 已提交
8076
	      Case 0:
M
minqiyang 已提交
8077

T
Tink_Y 已提交
8078 8079 8080
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8081

T
Tink_Y 已提交
8082 8083 8084
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8085

T
Tink_Y 已提交
8086
	      Case 1:
M
minqiyang 已提交
8087

T
Tink_Y 已提交
8088 8089
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8090

T
Tink_Y 已提交
8091 8092 8093
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8094

T
Tink_Y 已提交
8095
	      Case 2:
M
minqiyang 已提交
8096

T
Tink_Y 已提交
8097 8098
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8099

T
Tink_Y 已提交
8100 8101 8102
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8103 8104


W
whs 已提交
8105 8106
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8107
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8131
    out = helper.create_variable_for_type_inference(dtype)
8132 8133 8134 8135 8136 8137 8138 8139 8140
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8141
    helper.append_op(
8142
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8143 8144 8145 8146

    return out


8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8159 8160 8161 8162 8163

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8164 8165
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8166 8167
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8168
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8189 8190 8191 8192 8193

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8194 8195
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8196 8197
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8198
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8219 8220 8221 8222 8223

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8224 8225
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8226 8227
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8228
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8250 8251 8252 8253 8254

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8255
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8256
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8257 8258
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8259
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8282 8283 8284 8285 8286

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8287 8288
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8289 8290
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8291
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8313 8314 8315 8316 8317

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8318 8319
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8320 8321
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8322
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8323 8324 8325 8326 8327 8328 8329 8330
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8331 8332 8333 8334
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8335 8336
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8337 8338 8339

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8340
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8341
          weight (alpha).
J
jerrywgz 已提交
8342
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8343 8344 8345
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8346
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8347
          will be named automatically.
J
jerrywgz 已提交
8348 8349 8350 8351 8352 8353 8354 8355

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8356
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8370
        attr=helper.param_attr,
J
jerrywgz 已提交
8371 8372 8373 8374
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8375
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8376 8377 8378 8379 8380 8381 8382 8383 8384
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8385 8386 8387 8388 8389 8390 8391 8392 8393 8394
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8395
    Returns:
8396
        output(${out_type}): ${out_comment}
8397 8398 8399

    Examples:

8400
    .. code-block:: python
8401

H
haowang101779990 已提交
8402 8403
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8404 8405
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8406
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8425
    Returns:
8426
        output(${out_type}): ${out_comment}
8427 8428 8429 8430 8431

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8432 8433
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8434 8435
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8436
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8454
    Returns:
8455
        output(${out_type}): ${out_comment}
8456 8457 8458 8459 8460

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8461 8462
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8463 8464
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8465
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8466 8467 8468 8469 8470 8471 8472 8473
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8474 8475 8476 8477
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8478

H
haowang101779990 已提交
8479
    For Example:
M
minqiyang 已提交
8480

H
haowang101779990 已提交
8481
    .. code-block:: text
8482

H
haowang101779990 已提交
8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8504 8505 8506

    Args:
        x (Variable): A tensor of rank >= axis.
8507 8508
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8509 8510 8511 8512 8513 8514 8515 8516
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8517 8518 8519
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8520 8521 8522 8523
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8524
        ValueError: If axis is not in range [0, rank(x)].
8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8541 8542
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8543
    helper.append_op(
8544
        type='flatten2',
8545
        inputs={"X": x},
8546 8547
        outputs={'Out': out,
                 'XShape': x_shape},
8548 8549
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8550 8551


C
chenweihang 已提交
8552
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8553
    """
C
chenweihang 已提交
8554
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8555
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8556 8557
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8558

H
haowang101779990 已提交
8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8576 8577

    Args:
C
chenweihang 已提交
8578 8579 8580
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8592 8593
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8594 8595 8596 8597 8598 8599
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8600
    return out
8601

8602

S
sneaxiy 已提交
8603 8604 8605 8606 8607 8608 8609 8610 8611
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8612

S
sneaxiy 已提交
8613
    .. math::
8614

S
sneaxiy 已提交
8615 8616 8617
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8618
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8619 8620 8621 8622
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8623 8624 8625
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8626 8627
    Returns:
        Variable: The output sequence mask.
8628

S
sneaxiy 已提交
8629 8630
    """

Q
qingqing01 已提交
8631
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8632
    if name is None:
X
Xin Pan 已提交
8633
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8634
    else:
X
Xin Pan 已提交
8635
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8636

Q
qingqing01 已提交
8637 8638 8639
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8640 8641
        outputs={'Y': out},
        attrs={
8642
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8643 8644 8645
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8646 8647


X
Xin Pan 已提交
8648
def stack(x, axis=0):
S
sneaxiy 已提交
8649 8650 8651 8652
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8653 8654 8655 8656 8657 8658 8659

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8660
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8661
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8662

C
chengduozh 已提交
8663 8664
    For Example:

C
chengduozh 已提交
8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8703
    Args:
8704
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8705
        axis (int|None): The axis along which all inputs are stacked.
8706

S
sneaxiy 已提交
8707 8708
    Returns:
        Variable: The stacked variable.
8709

S
sneaxiy 已提交
8710 8711
    """

X
Xin Pan 已提交
8712 8713 8714 8715 8716 8717
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8718
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8719
    helper.append_op(
S
sneaxiy 已提交
8720 8721
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8722

X
Xin Pan 已提交
8723
    return out
D
dzhwinter 已提交
8724 8725 8726 8727 8728 8729 8730


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8731

D
dzhwinter 已提交
8732 8733 8734
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8735
    raised.
D
dzhwinter 已提交
8736 8737

    Args:
M
minqiyang 已提交
8738
        x (Variable): Input variable.
D
dzhwinter 已提交
8739 8740
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8741

D
dzhwinter 已提交
8742 8743
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8744

D
dzhwinter 已提交
8745 8746 8747 8748 8749 8750 8751 8752 8753 8754
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8755
    for _ in range(num):
X
Xin Pan 已提交
8756
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8757 8758 8759 8760 8761 8762 8763 8764

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8777

W
whs 已提交
8778 8779 8780 8781
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8782

W
whs 已提交
8783
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8784

W
whs 已提交
8785
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8786

W
whs 已提交
8787 8788 8789 8790
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8791

W
whs 已提交
8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8808
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8809 8810 8811 8812 8813 8814
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8815 8816


G
fix  
gongweibao 已提交
8817 8818 8819
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8820
@templatedoc()
G
fix  
gongweibao 已提交
8821 8822 8823 8824 8825 8826 8827 8828 8829
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8830
    ${comment}
G
fix  
gongweibao 已提交
8831 8832

    Args:
G
gongweibao 已提交
8833 8834 8835
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8836
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8837 8838 8839
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8840 8841
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8842
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8843

8844 8845 8846 8847 8848
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8849 8850 8851
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8852
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8869 8870


G
gongweibao 已提交
8871
@templatedoc()
X
Xin Pan 已提交
8872
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8873
    """
G
gongweibao 已提交
8874
    ${comment}
G
fix  
gongweibao 已提交
8875 8876

    Args:
G
gongweibao 已提交
8877 8878 8879 8880
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8881 8882 8883
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8884
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8885

8886 8887 8888 8889
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8890 8891 8892
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8893
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8894 8895 8896 8897 8898 8899 8900 8901 8902 8903
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8904
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8905 8906 8907 8908 8909
        })

    return out


G
gongweibao 已提交
8910
@templatedoc()
G
fix  
gongweibao 已提交
8911
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8912
    """
G
gongweibao 已提交
8913
    ${comment}
G
fix  
gongweibao 已提交
8914 8915

    Args:
G
gongweibao 已提交
8916 8917 8918 8919
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8920
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8921 8922

    Returns:
G
gongweibao 已提交
8923
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8924

8925 8926 8927 8928 8929 8930 8931 8932 8933 8934
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8935 8936 8937
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8938
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8950
@templatedoc()
G
fix  
gongweibao 已提交
8951 8952 8953 8954 8955 8956 8957 8958 8959
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8960
    ${comment}
G
fix  
gongweibao 已提交
8961 8962

    Args:
G
gongweibao 已提交
8963 8964
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8965
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8966 8967 8968 8969
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8970
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8971 8972

    Returns:
G
gongweibao 已提交
8973
        out (Variable): ${out_comment}
8974 8975 8976 8977 8978 8979 8980 8981

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8982 8983 8984
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8985
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9004
@templatedoc()
X
Xin Pan 已提交
9005
def sum(x):
G
fix  
gongweibao 已提交
9006
    """
G
gongweibao 已提交
9007
    ${comment}
G
fix  
gongweibao 已提交
9008 9009

    Args:
G
gongweibao 已提交
9010
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9011 9012

    Returns:
G
gongweibao 已提交
9013
        out (Variable): ${out_comment}
9014 9015 9016 9017 9018 9019

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9020 9021 9022
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9023 9024
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9025 9026 9027 9028
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9029
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9030 9031 9032 9033

    return out


G
gongweibao 已提交
9034
@templatedoc()
G
fix  
gongweibao 已提交
9035 9036
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9037
    ${comment}
G
fix  
gongweibao 已提交
9038 9039

    Args:
G
gongweibao 已提交
9040 9041 9042 9043
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9044 9045

    Returns:
G
gongweibao 已提交
9046
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9047

9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9059 9060 9061
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9062 9063
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9077 9078
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9079
    Get the shape of the input.
G
fix  
gongweibao 已提交
9080 9081

    Args:
C
chengduozh 已提交
9082
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9083 9084

    Returns:
C
fix doc  
chengduozh 已提交
9085
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9086

9087 9088 9089 9090 9091 9092
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9093 9094 9095
    """

    helper = LayerHelper('shape', **locals())
9096
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9097
    helper.append_op(
G
fix  
gongweibao 已提交
9098
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9099 9100

    return out
G
merge  
gongweibao 已提交
9101 9102


S
sneaxiy 已提交
9103 9104 9105 9106 9107 9108 9109 9110
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9111 9112
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9113
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9114 9115 9116
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9117

S
sneaxiy 已提交
9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9129
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9130 9131 9132 9133 9134 9135 9136 9137
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9138
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9139
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9140 9141 9142 9143 9144 9145

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9146
    if name is None:
X
Xin Pan 已提交
9147
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9148 9149 9150
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9151 9152 9153 9154 9155 9156 9157 9158 9159 9160

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9161
    return helper.append_activation(out)
S
sneaxiy 已提交
9162 9163


X
Xin Pan 已提交
9164
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9165 9166 9167
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9168
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9169 9170 9171
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9172
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9173 9174 9175
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9176
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9177 9178 9179
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9180
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9181 9182 9183
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9184
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9185 9186 9187
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9188
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9200 9201
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9202
        ])
M
minqiyang 已提交
9203 9204


9205
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9206 9207
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9208 9209
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9210 9211 9212

    if out is None:
        if name is None:
X
Xin Pan 已提交
9213
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9229
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9241 9242 9243 9244 9245 9246 9247 9248 9249

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9250 9251 9252 9253 9254 9255 9256
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9257
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9269 9270 9271 9272 9273 9274 9275 9276 9277

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9278 9279 9280 9281 9282 9283 9284
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9285
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9297 9298 9299 9300 9301 9302 9303 9304 9305

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9306 9307 9308 9309 9310 9311 9312
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9313
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9314 9315 9316 9317 9318 9319 9320 9321 9322 9323
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9324 9325 9326 9327 9328 9329 9330

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9331 9332 9333 9334
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9350 9351 9352 9353 9354 9355 9356

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9357 9358 9359 9360 9361
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9362 9363 9364 9365
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9389 9390 9391 9392 9393 9394 9395

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9396 9397 9398 9399 9400
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9401 9402 9403 9404
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9405 9406 9407 9408 9409 9410 9411 9412

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9431
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9432 9433 9434 9435 9436 9437 9438 9439 9440 9441
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9484
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9485 9486 9487 9488 9489 9490 9491 9492 9493
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9494 9495
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9496 9497 9498 9499 9500 9501
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9502 9503 9504
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9505 9506
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9507 9508 9509 9510 9511 9512
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9513
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9514
        name(basestring|None): Name of the output.
9515 9516
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9517 9518 9519

    Returns:
        out(${out_type}): ${out_comment}
9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9534 9535 9536 9537 9538
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9539
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9540 9541 9542 9543 9544 9545 9546 9547
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9548 9549
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9570
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9571 9572 9573 9574 9575 9576 9577 9578 9579 9580
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9581 9582


J
JiabinYang 已提交
9583
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9584
    """
J
JiabinYang 已提交
9585
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9586 9587 9588

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9589
    The attr blocksize indicates the input block size.
9590 9591

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9592
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9593 9594

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9595
    (but keeping all data)
J
JiabinYang 已提交
9596

J
JiabinYang 已提交
9597
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9598
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9599 9600 9601 9602 9603
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9604
    Args:
J
JiabinYang 已提交
9605
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9606
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9607 9608

    Returns:
J
JiabinYang 已提交
9609
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9610 9611

    Raises:
J
JiabinYang 已提交
9612
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9613 9614 9615 9616 9617 9618

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9619
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9620
                x=data, blocksize=2)
J
JiabinYang 已提交
9621 9622
    """

J
JiabinYang 已提交
9623
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9624

J
JiabinYang 已提交
9625 9626
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9627 9628

    if name is None:
J
JiabinYang 已提交
9629 9630
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9631 9632 9633 9634 9635
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9636
        type="space_to_depth",
J
JiabinYang 已提交
9637
        inputs={"X": x},
J
JiabinYang 已提交
9638
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9639
        outputs={"Out": out})
J
JiabinYang 已提交
9640 9641
    return out

J
JiabinYang 已提交
9642

S
sneaxiy 已提交
9643 9644
@templatedoc()
def sequence_reverse(x, name=None):
9645
    """
S
sneaxiy 已提交
9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9657
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9658 9659 9660 9661 9662 9663 9664 9665 9666 9667
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9668 9669


9670 9671 9672 9673 9674 9675
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9676

9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9696
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9709 9710


B
barrierye 已提交
9711
def similarity_focus(input, axis, indexes, name=None):
9712
    """
B
barrierye 已提交
9713
    SimilarityFocus Operator
B
barrierye 已提交
9714 9715

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9716

9717 9718 9719
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9720
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9721 9722 9723 9724 9725 9726 9727
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9728
       each index.
B
barrierye 已提交
9729 9730 9731 9732
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9782
    Args:
9783
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9784
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9785
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9786
            1, 2 or 3.
B
barrierye 已提交
9787
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9788 9789

    Returns:
H
haowang101779990 已提交
9790 9791
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9792

B
barrierye 已提交
9793 9794
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9795

B
barrierye 已提交
9796
            data = fluid.layers.data(
B
barrierye 已提交
9797 9798
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9799

B
barrierye 已提交
9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9812 9813 9814 9815 9816
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9817 9818 9819 9820 9821 9822 9823
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9824 9825


M
minqiyang 已提交
9826 9827
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9828 9829
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9830 9831
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9870
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9871
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9872 9873 9874 9875 9876 9877

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9878

M
minqiyang 已提交
9879 9880 9881
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9882 9883
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9884 9885
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9886 9887 9888 9889 9890 9891 9892
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9893 9894


D
dengkaipeng 已提交
9895
@templatedoc()
9896 9897
def grid_sampler(x, grid, name=None):
    """
9898
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9899
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9900 9901 9902 9903
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9904
    interpolation value of 4 nearest corner points.
9905

H
haowang101779990 已提交
9906
    .. code-block:: text
9907

H
haowang101779990 已提交
9908 9909
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9910

H
haowang101779990 已提交
9911 9912
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9913

H
haowang101779990 已提交
9914 9915 9916
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9917

H
haowang101779990 已提交
9918 9919 9920 9921 9922 9923 9924 9925 9926
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9927

H
haowang101779990 已提交
9928 9929 9930 9931
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9932

H
haowang101779990 已提交
9933 9934 9935 9936
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9937

H
haowang101779990 已提交
9938 9939 9940 9941
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9942

H
haowang101779990 已提交
9943 9944
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9945 9946

    Args:
9947 9948 9949
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9950 9951

    Returns:
H
haowang101779990 已提交
9952
        Variable: Output of shape [N, C, H, W] data samples input X
9953 9954
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9955 9956 9957 9958 9959 9960 9961 9962
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9963

D
dengkaipeng 已提交
9964 9965 9966 9967 9968 9969 9970 9971 9972
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9973
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9974 9975
    ipts = {'X': x, 'Grid': grid}

9976
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9977 9978 9979
    return out


G
gmcather 已提交
9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10046
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10047 10048 10049 10050 10051 10052 10053
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10054

H
heqiaozhi 已提交
10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10069 10070 10071 10072
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10073
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10074 10075
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10076
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10077 10078

    .. math::
H
haowang101779990 已提交
10079 10080 10081
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10082 10083

    Where:
H
haowang101779990 已提交
10084 10085
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10100

G
gmcather 已提交
10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10117 10118 10119 10120 10121 10122 10123 10124 10125 10126


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10127
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10128

Q
Qiao Longfei 已提交
10129
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10130 10131 10132
    For example:

    .. math::
H
haowang101779990 已提交
10133
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10134

Q
Qiao Longfei 已提交
10135
    In this formula:
10136 10137
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10138
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10139
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10140 10141 10142
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10143 10144
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10145 10146 10147
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10148
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10149
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10150
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10151 10152 10153 10154
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10155
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10156 10157 10158 10159

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10160
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10161 10162
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10163
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10164 10165 10166 10167

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10168
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10209 10210


S
shippingwang 已提交
10211
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10212 10213
    """
    **Shuffle Channel Operator**
10214

S
shippingwang 已提交
10215 10216 10217 10218 10219 10220
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10221
    
S
shippingwang 已提交
10222
    .. code-block:: text
10223

S
shippingwang 已提交
10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10252
    Args: 
S
shippingwang 已提交
10253 10254
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10255 10256

    Returns:
S
shippingwang 已提交
10257 10258
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10259 10260

    Raises:
S
shippingwang 已提交
10261
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10262 10263 10264

    Examples:
        .. code-block:: python
10265 10266

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10267
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10268 10269 10270
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10271
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10272 10273 10274 10275 10276 10277 10278 10279 10280

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10281
    return out
S
Add  
shippingwang 已提交
10282 10283


S
sneaxiy 已提交
10284
class PyFuncRegistry(object):
S
sneaxiy 已提交
10285 10286 10287
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10288
        if func is None or not callable(func):
S
sneaxiy 已提交
10289 10290 10291
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10292
        # find named args using reflection
S
sneaxiy 已提交
10293 10294 10295 10296 10297 10298 10299
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10300 10301 10302
        '''
        Why record self here?

M
minqiyang 已提交
10303 10304
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10305
           to find the registered function corresponding
M
minqiyang 已提交
10306
           to :code:`idx`.
S
sneaxiy 已提交
10307

M
minqiyang 已提交
10308 10309
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10310
           whose reference count is 1 would cause
M
minqiyang 已提交
10311
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10312 10313
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10314
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10329 10330 10331 10332 10333 10334 10335 10336 10337
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10338

S
sneaxiy 已提交
10339 10340
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10341 10342

        ret = []
S
sneaxiy 已提交
10343 10344 10345
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10346 10347
                continue

S
sneaxiy 已提交
10348 10349
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10350

S
sneaxiy 已提交
10351 10352 10353
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10354

S
sneaxiy 已提交
10355
        return tuple(ret)
S
sneaxiy 已提交
10356 10357


S
sneaxiy 已提交
10358 10359 10360 10361
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10362

S
sneaxiy 已提交
10363 10364 10365 10366 10367 10368 10369 10370
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10371
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10372

S
sneaxiy 已提交
10373 10374
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10375 10376 10377 10378
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10379
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10380
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10381 10382
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10383 10384 10385 10386 10387
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10388
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10389
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10390
                                       None means no backward. Default None.
S
sneaxiy 已提交
10391
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10392
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10393 10394
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10395
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10396 10397 10398

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10399 10400

    Examples:
M
minqiyang 已提交
10401

S
sneaxiy 已提交
10402 10403 10404 10405 10406
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10407
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10408 10409
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10410
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10411 10412 10413
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10414
        >>>
S
sneaxiy 已提交
10415 10416 10417 10418 10419
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10420
        >>>     print(x)
S
sneaxiy 已提交
10421 10422 10423 10424 10425 10426
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10427
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10428 10429
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10430 10431
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10432 10433 10434 10435 10436 10437 10438 10439
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10440
    """
S
sneaxiy 已提交
10441
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10442 10443 10444
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10445
        x = [x]
S
sneaxiy 已提交
10446 10447
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10448

S
sneaxiy 已提交
10449 10450 10451
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10452
        out_list = [out]
S
sneaxiy 已提交
10453
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10454
        out_list = out
S
sneaxiy 已提交
10455 10456 10457
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10458

S
sneaxiy 已提交
10459 10460
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10461
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10462 10463

    for each_out in out_list:
S
sneaxiy 已提交
10464 10465
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10466 10467
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10468

S
sneaxiy 已提交
10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10484 10485 10486 10487

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10488 10489
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10490 10491 10492
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10493
        })
S
sneaxiy 已提交
10494
    return out
S
sneaxiy 已提交
10495 10496 10497


# For debug usage
S
sneaxiy 已提交
10498 10499 10500 10501
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10554

M
minqiyang 已提交
10555

M
minqiyang 已提交
10556
def huber_loss(input, label, delta):
10557
    """
M
minqiyang 已提交
10558 10559 10560
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10561 10562 10563 10564

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10565
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10566 10567 10568 10569

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10570
        huber\_loss = 0.5 * (label - input) * (label - input)
10571 10572 10573 10574 10575 10576 10577


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10578
        delta (float): The parameter of huber loss, which controls
10579 10580 10581
                       the range of outliers

    Returns:
M
minqiyang 已提交
10582
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10583 10584 10585 10586 10587

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10588
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10589
    """
M
minqiyang 已提交
10590
    helper = LayerHelper('huber_loss', **locals())
10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10672 10673


C
ceci3 已提交
10674
from .ops import square
C
ceci3 已提交
10675
from .control_flow import equal
C
ceci3 已提交
10676 10677


C
ceci3 已提交
10678 10679 10680
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10681

C
ceci3 已提交
10682
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10683 10684

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10685
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10686 10687 10688 10689 10690
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10691 10692
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10693 10694 10695 10696 10697 10698 10699

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10700 10701 10702 10703 10704 10705 10706 10707
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10708 10709 10710 10711 10712 10713 10714
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
10715
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
10716 10717
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
10718 10719
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
10720 10721 10722 10723
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
10724 10725 10726
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
10727 10728 10729
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss