clip_op.h 2.8 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
W
wanghaoshuang 已提交
19
#include "paddle/platform/transform.h"
W
wanghaoshuang 已提交
20 21 22 23

namespace paddle {
namespace operators {

W
wanghaoshuang 已提交
24 25
using framework::Tensor;
using platform::Transform;
W
wanghaoshuang 已提交
26

W
wanghaoshuang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
template <typename T>
class ClipFunctor {
 public:
  explicit ClipFunctor(const T min, const T max) : min_(min), max_(max) {}
  HOSTDEVICE T operator()(const T& x) const {
    if (x < min_)
      return min_;
    else if (x > max_)
      return max_;
    else
      return x;
  }

 private:
  T min_;
  T max_;
};

template <typename T>
class ClipGradFunctor {
 public:
  explicit ClipGradFunctor(const T min, const T max) : min_(min), max_(max) {}
  HOSTDEVICE T operator()(const T& x, const T& y) const {
    if (y > min_ && y < max_)
      return x;
    else
      return 0;
  }
W
wanghaoshuang 已提交
55

W
wanghaoshuang 已提交
56 57 58 59
 private:
  T min_;
  T max_;
};
60

W
wanghaoshuang 已提交
61
template <typename T>
W
wanghaoshuang 已提交
62 63 64
class ClipKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
W
wanghaoshuang 已提交
65 66 67 68 69 70 71 72 73
    auto max = context.Attr<T>("max");
    auto min = context.Attr<T>("min");
    auto* x = context.Input<Tensor>("X");
    auto* out = context.Output<Tensor>("Out");
    T* out_data = out->mutable_data<T>(context.GetPlace());
    const T* x_data = x->data<T>();
    int numel = x->numel();
    Transform(context.device_context(), x_data, x_data + numel, out_data,
              ClipFunctor<T>(min, max));
W
wanghaoshuang 已提交
74 75 76 77 78 79 80
  }
};

template <typename T>
class ClipGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
W
wanghaoshuang 已提交
81 82 83 84
    auto max = context.Attr<T>("max");
    auto min = context.Attr<T>("min");
    auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
W
wanghaoshuang 已提交
85
    if (d_x != nullptr) {
W
wanghaoshuang 已提交
86 87
      auto* x = context.Input<Tensor>("X");
      int64_t numel = d_out->numel();
W
wanghaoshuang 已提交
88
      auto d_x_data = d_x->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
89 90 91 92
      const T* d_out_data = d_out->data<T>();
      const T* x_data = x->data<T>();
      Transform(context.device_context(), d_out_data, d_out_data + numel,
                x_data, d_x_data, ClipGradFunctor<T>(min, max));
W
wanghaoshuang 已提交
93 94 95 96 97 98
    }
  }
};

}  // namespace operators
}  // namespace paddle