test_one_hot_op.py 3.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang yaming 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import math
18
from op_test import OpTest
19 20 21 22
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.framework import Program, program_guard
Y
Yang yaming 已提交
23 24 25 26 27 28 29


class TestOneHotOp(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        dimension = 12
30
        x_lod = [[4, 1, 3, 3]]
31
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
32
        x = np.array(x).astype('int').reshape([sum(x_lod[0]), 1])
Y
Yang yaming 已提交
33 34 35 36

        out = np.zeros(shape=(np.product(x.shape[:-1]),
                              depth)).astype('float32')

37
        for i in range(np.product(x.shape)):
Y
Yang yaming 已提交
38 39 40
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod)}
41
        self.attrs = {'depth': depth, 'dtype': int(core.VarDesc.VarType.FP32)}
Y
Yang yaming 已提交
42 43 44 45 46 47 48 49 50 51 52
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
        self.check_output()


class TestOneHotOp_default_dtype(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        dimension = 12
53
        x_lod = [[4, 1, 3, 3]]
54
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
55
        x = np.array(x).astype('int').reshape([sum(x_lod[0]), 1])
Y
Yang yaming 已提交
56 57 58 59

        out = np.zeros(shape=(np.product(x.shape[:-1]),
                              depth)).astype('float32')

60
        for i in range(np.product(x.shape)):
Y
Yang yaming 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod)}
        self.attrs = {'depth': depth}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
        self.check_output()


class TestOneHotOp_exception(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        self.depth = 10
        self.place = core.CPUPlace()
        self.dimension = 12
        self.x = core.LoDTensor()
78
        x_lod = [[4, 1, 3, 3]]
79
        data = [np.random.randint(11, 20) for i in range(sum(x_lod[0]))]
80
        data = np.array(data).astype('int').reshape([sum(x_lod[0]), 1])
Y
Yang yaming 已提交
81
        self.x.set(data, self.place)
82
        self.x.set_recursive_sequence_lengths(x_lod)
Y
Yang yaming 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

    def test_check_output(self):
        program = Program()
        with program_guard(program):
            x = fluid.layers.data(
                name='x', shape=[self.dimension], dtype='float32', lod_level=1)
            block = program.current_block()
            one_hot_out = block.create_var(
                name="one_hot_out",
                type=core.VarDesc.VarType.LOD_TENSOR,
                dtype='float32')
            block.append_op(
                type='one_hot',
                inputs={'X': x},
                attrs={'depth': self.depth},
                outputs={'Out': one_hot_out})
            exe = fluid.Executor(self.place)

            def run():
                exe.run(feed={'x': self.x},
                        fetch_list=[one_hot_out],
                        return_numpy=False)

            self.assertRaises(core.EnforceNotMet, run)


if __name__ == '__main__':
    unittest.main()