tensor.py 19.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
19
from ..initializer import Constant, force_init_on_cpu
20
from ..core import VarDesc
21
from .layer_function_generator import templatedoc
X
xuwei06 已提交
22
import numpy
Y
Yu Yang 已提交
23 24

__all__ = [
25 26
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
27
    'create_global_var',
28 29 30 31 32 33
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
S
sneaxiy 已提交
34 35
    'argmin',
    'argmax',
Y
Yibing Liu 已提交
36
    'argsort',
37 38
    'ones',
    'zeros',
Q
qiaolongfei 已提交
39
    'reverse',
Y
Yu Yang 已提交
40 41 42
]


X
xuwei06 已提交
43
def create_tensor(dtype, name=None, persistable=False):
44
    """
Q
update  
qiaolongfei 已提交
45
    Create an variable, which will hold a LoDTensor with data type dtype.
46 47

    Args:
Q
update  
qiaolongfei 已提交
48
        dtype(string): 'float32'|'int32'|..., the data type of the
49
            created tensor.
Q
update  
qiaolongfei 已提交
50
        name(string): The name of the created tensor, if not set,
51
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
52
        persistable(bool): Set the persistable flag of the create tensor.
53 54 55 56 57 58 59 60 61

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
62
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
63 64
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
65 66


67 68
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
69
                     name=None,
70 71 72 73
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
74 75 76 77 78 79
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

80 81 82 83 84 85 86 87 88 89 90
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
91 92 93 94 95 96
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
97
    """
Q
Qiao Longfei 已提交
98
    helper = LayerHelper("create_parameter", **locals())
99
    if attr is None:
X
xuwei06 已提交
100
        attr = ParamAttr(name=name)
101 102 103 104
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


105 106 107 108 109 110 111
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
F
fengjiayi 已提交
112 113
    Create a new variable in the global block(block 0).

114 115
    Args:
        shape(list[int]): shape of the variable
F
fengjiayi 已提交
116 117 118 119 120 121 122 123 124 125
        value(float): the value of the variable. The new created 
                      variable will be filled with it.
        dtype(string): data type of the variable
        persistable(bool): if this variable is persistable. 
                           Default: False
        force_cpu(bool): force this variable to be on CPU. 
                         Default: False
        name(str|None): The name of the variable. If set to None the variable 
                        name will be generated automatically. 
                        Default: None
126 127 128

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
129 130 131 132 133 134

    Examples:
        .. code-block:: python

            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32', 
                                 persistable=True, force_cpu=True, name='new_var')
135
    """
Q
Qiao Longfei 已提交
136 137 138 139
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype, shape=shape, persistable=persistable, name=name)
    helper.set_variable_initializer(
140 141
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
142 143 144
    return var


145
def cast(x, dtype):
Y
Yu Yang 已提交
146
    """
Y
Yibing Liu 已提交
147 148 149 150 151 152 153 154 155 156 157 158
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts 
    it to the output with :attr:`dtype`.

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
159

Y
Yibing Liu 已提交
160 161
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
162 163 164 165 166 167 168 169 170 171 172 173
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


174
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
175
    """
176 177 178
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
179
    and returns that as the output.
180 181 182 183

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
184 185
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
186 187 188 189 190 191

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
192

F
fengjiayi 已提交
193
           out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
194 195 196 197 198 199 200 201 202 203 204
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


205
def sums(input, out=None):
F
fengjiayi 已提交
206 207
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
208 209 210 211 212
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
213
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
214
                             Default: None
K
kavyasrinet 已提交
215 216

    Returns:
F
fengjiayi 已提交
217
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
218 219

    Examples:
F
fengjiayi 已提交
220
        .. code-block:: python
K
kavyasrinet 已提交
221 222 223 224 225 226

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
227 228
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
229
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
230 231 232 233
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
T
tensor-tang 已提交
234 235 236 237 238
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
239 240 241
    return out


F
fengjiayi 已提交
242
def assign(input, output=None):
243 244 245 246 247 248
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
249
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
250
        output(Variable|None): The destination variable
251 252 253 254 255 256

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
257

258 259 260 261
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
262
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
263 264
    if output is None:
        output = helper.create_tmp_variable(dtype=input.dtype)
X
xuwei06 已提交
265 266
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
267
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
268 269
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
270
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
271
            value_name = "fp32_values"
272
            values = [float(v) for v in input.flat]
273
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
274
            value_name = "int32_values"
275
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
276 277
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
278 279 280
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
281 282 283 284 285 286 287

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
288
                value_name: values
X
xuwei06 已提交
289 290 291 292
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
293 294 295
    return output


Q
QI JUN 已提交
296
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
297
    """
298 299
    **fill_constant**

300 301
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
302

303
    The attribute `stop_gradient` of the created tensor is set to True.
304 305

    Args:
306
        shape(tuple|list|None): Shape of the output tensor.
307
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
308 309
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
310
        force_cpu(True|False): data should be on CPU if set true.
311 312

    Returns:
313
        Variable: The tensor variable storing the output.
314 315 316 317 318

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
319
    """
320

Y
Yu Yang 已提交
321 322 323 324 325 326 327
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
328 329 330 331
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
332
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
333
        })
Y
Yu Yang 已提交
334 335 336 337
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
338
@templatedoc()
Y
Yu Yang 已提交
339 340 341 342 343
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
344
                                  output_dim_idx=0):
345
    """
Y
yuyang18 已提交
346
    ${comment}
347 348 349

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
350 351 352
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

353
    Args:
Y
yuyang18 已提交
354
        input(${input_type}): ${input_comment}.
355

Y
yuyang18 已提交
356
        shape(${shape_type}): ${shape_comment}.
357

Y
yuyang18 已提交
358 359 360
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
361

Y
yuyang18 已提交
362 363 364 365 366
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
367
        ${out_comment}.
368
    """
Y
Yu Yang 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
386 387 388 389
def argmin(x, axis=0):
    """
    **argmin**

390
    This function computes the indices of the min elements
S
sneaxiy 已提交
391 392 393 394 395 396
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
397

S
sneaxiy 已提交
398 399
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
400

S
sneaxiy 已提交
401 402
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
403

S
sneaxiy 已提交
404
          out = fluid.layers.argmin(x=in, axis=0)
405
          out = fluid.layers.argmin(x=in, axis=-1)
S
sneaxiy 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    """
    helper = LayerHelper("arg_min", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

421
    This function computes the indices of the max elements
S
sneaxiy 已提交
422 423 424 425 426 427
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
428

S
sneaxiy 已提交
429 430
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
431

S
sneaxiy 已提交
432 433
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
434

S
sneaxiy 已提交
435
          out = fluid.layers.argmax(x=in, axis=0)
436
          out = fluid.layers.argmax(x=in, axis=-1)
S
sneaxiy 已提交
437 438 439 440 441 442 443 444 445 446 447
    """
    helper = LayerHelper("arg_max", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


448
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
    """
    Performs sorting on the input Variable along the given axis, and outputs 
    sorted data Varibale and its corresponding index Variable with the same 
    shape as :attr:`input`.

    .. code-block:: text
    
        For example, the given axis is -1 and the input Variable

            input = [[0.15849551, 0.45865775, 0.8563702 ],
                     [0.12070083, 0.28766365, 0.18776911]],

        after argsort, the sorted Vairable becomes

            out = [[0.15849551, 0.45865775, 0.8563702 ],
                   [0.12070083, 0.18776911, 0.28766365]],

        and the sorted indices along the given axis turn outs to be

            indices = [[0, 1, 2], 
                       [0, 2, 1]]

    Args:
        input(Variable): The input Variable for sorting.
        axis(int): The axis along which to sort the input Variable. When 
                   :attr:`axis` < 0, the actual axis will be :attr:`axis` + 
                   rank(:attr:`input`). Default -1, the last dimension.
476 477
        name(str|None): (optional) A name for this layer. If set None, the 
                   layer will be named automatically.
Y
Yibing Liu 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

    Returns:
        tuple: A tuple of sorted data Variable and the sorted indices.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(data=[2, 3])
            out, indices = fluid.layers.argsort(input, axis=0)
    """
    helper = LayerHelper("argsort", **locals())
    out = helper.create_tmp_variable(dtype=input.dtype, stop_gradient=True)
    ids = helper.create_tmp_variable(VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
495 496
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
497 498 499
    return out, ids


Y
Yang Yu 已提交
500
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
501
    """
502 503 504 505 506 507 508 509 510
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
511
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
512 513 514 515 516 517 518 519

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
520 521 522 523
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
524
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
525
    """
526 527 528 529 530 531 532 533
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
534 535 536
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
537 538

    Returns:
W
wanghaoshuang 已提交
539
        Variable: The tensor variable storing the output.
540 541 542 543 544

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
545 546
    """
    return fill_constant(value=0.0, **locals())
547 548


F
fengjiayi 已提交
549 550 551 552 553 554 555 556
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
557 558 559
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reverse',
        inputs={'Input': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


583 584 585 586 587 588 589
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
590 591 592
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
608 609
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
610
        file_path(str): The file path where variables will be saved.
611
        overwrite(bool): Whether or not cover the given file when it has already
612 613
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})