control_flow.py 66.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dzhwinter 已提交
14
import contextlib
D
dzhwinter 已提交
15

16 17
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
18
from .. import core
19
from ..framework import Program, Variable, Operator
20
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
21
from ..initializer import force_init_on_cpu
22
from .ops import logical_and, logical_not, logical_or
Y
yuyang18 已提交
23
import numpy
24
import warnings
25
from functools import reduce
D
dzhwinter 已提交
26

Q
QI JUN 已提交
27
__all__ = [
Y
ying 已提交
28
    'While',
29
    'Switch',
Y
ying 已提交
30 31 32 33
    'increment',
    'array_write',
    'create_array',
    'less_than',
34
    'equal',
Y
ying 已提交
35 36 37 38 39 40 41 42
    'array_read',
    'array_length',
    'IfElse',
    'DynamicRNN',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'ParallelDo',
    'Print',
43
    'is_empty',
D
dzhwinter 已提交
44 45
]

Y
Yu Yang 已提交
46

47
def split_lod_tensor(input, mask, level=0):
48 49 50 51
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
52 53
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
54 55 56 57 58

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
59
        level(int): The specific lod level to split.
60 61

    Returns:
Q
qiaolongfei 已提交
62 63 64 65
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
66 67 68 69

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
70
          x = fluid.layers.data(name='x', shape=[1])
71 72
          x.persistable = True

Q
qiaolongfei 已提交
73
          y = fluid.layers.data(name='y', shape=[1])
74 75
          y.persistable = True

Q
qiaolongfei 已提交
76
          out_true, out_false = fluid.layers.split_lod_tensor(
77
                input=x, mask=y, level=level)
78

79
    """
80
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
81 82
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
83 84 85 86 87 88 89 90 91 92 93 94
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


95
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
96 97 98 99 100
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
101 102 103
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
104 105 106 107 108 109 110

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
111
        level(int): The specific lod level to merge.
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
131
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
132
    out = helper.create_tmp_variable(dtype=in_true.dtype)
133 134 135 136 137 138 139 140 141 142 143
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
144 145 146 147 148 149 150
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
151 152
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
153 154 155 156 157 158 159 160 161 162
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
163 164 165 166 167 168 169 170 171
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
172
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
173 174
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
175 176

    Returns:
Y
yangyaming 已提交
177
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
178

Y
Yan Chunwei 已提交
179

Y
Yan Chunwei 已提交
180
    Examples:
Y
Yan Chunwei 已提交
181

Y
Yan Chunwei 已提交
182 183
        .. code-block:: python

Y
Yan Chunwei 已提交
184 185 186
           value = some_layer(...)
           Print(value, summarize=10,
               message="The content of some_layer: ")
Y
Yan Chunwei 已提交
187 188
    '''
    helper = LayerHelper('print', **locals())
Y
yangyaming 已提交
189
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yan Chunwei 已提交
190 191
    helper.append_op(
        type='print',
Y
yangyaming 已提交
192
        inputs={'In': input},
Y
Yan Chunwei 已提交
193 194 195 196 197 198 199 200
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
201 202 203
            'print_phase': print_phase.upper()
        },
        outputs={'Out': out})
Y
Yan Chunwei 已提交
204 205 206
    return out


Y
Yu Yang 已提交
207 208
class BlockGuard(object):
    """
209 210 211 212
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
213 214
    """

215 216
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
217
            raise TypeError("BlockGuard takes a program")
218
        self.main_program = main_program
Y
Yu Yang 已提交
219 220

    def __enter__(self):
221
        self.main_program.create_block()
Y
Yu Yang 已提交
222 223

    def __exit__(self, exc_type, exc_val, exc_tb):
224
        self.main_program.rollback()
Y
Yu Yang 已提交
225 226 227 228 229
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
230
class ParallelDo(object):
231
    """
L
Luo Tao 已提交
232 233
    ParallelDo is used to represent multi-thread data parallel processing.

L
Luo Tao 已提交
234
    Its vanilla implementation can be shown as the following (:math:`|` means
L
Luo Tao 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    single thread and :math:`||||` means multiple threads)

    .. code-block:: text

      In the forward pass
        |      Split input onto different devices
        |      Copy parameter onto different devices
        ||||   Compute forward pass in parallel
        |      Merge output from different devices

      In the backward pass
        |      Split output@grad onto different devices
        ||||   Compute backward pass in parallel
        |      accumulate param@grad from different devices to the first device
        |      Merge input@grad from different devices
L
Luo Tao 已提交
250
        |      Copy param@grad to the place of parallel_do_op
L
Luo Tao 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

    Examples:

    .. code-block:: python

      images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
      label = fluid.layers.data(name='label', shape=[1], dtype='int64')

      # ParallelDo version & Single-thread version
      if thread_num > 1:
          places = fluid.layers.get_places(thread_num)
          pd = fluid.layers.ParallelDo(places)
          with pd.do():
              images = pd.read_input(images)
              label = pd.read_input(label)
              predict = cnn_model(images)
              cost = fluid.layers.cross_entropy(input=predict, label=label)

              avg_cost = fluid.layers.mean(x=cost)
              pd.write_output(avg_cost)

          avg_cost = pd()
          avg_cost = fluid.layers.mean(avg_cost)
      else:
          predict = cnn_model(images)
          cost = fluid.layers.cross_entropy(input=predict, label=label)
          avg_cost = fluid.layers.mean(x=cost)

    .. warning::
280

L
Luo Tao 已提交
281
       It will be soon deprecated, please use ParallelExecutor instead.
Y
Yang Yang 已提交
282 283
    """

Y
Yang Yang 已提交
284
    def __init__(self, places, use_nccl=False, name=None):
285 286 287
        warnings.warn(
            "API ParallelDo is deprecated since 0.15.0. Please use ParallelExecutor instead.",
            Warning)
Y
Yang Yang 已提交
288 289 290 291 292
        self.helper = LayerHelper("parallel_do", name=name)
        self.inputs = []
        self.places = places
        self.outputs = []
        self.status = StaticRNN.BEFORE_RNN_BLOCK
Y
Yang Yang 已提交
293
        self.use_nccl = use_nccl
Y
Yang Yang 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

    def do(self):
        return BlockGuardWithCompletion(self)

    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def read_input(self, var):
        self.inputs.append(var)
Y
Yang Yang 已提交
317
        return var
Y
Yang Yang 已提交
318 319 320 321 322 323 324 325 326 327

    def write_output(self, var):
        self.outputs.append(var)

    def get_parameters(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        local_inputs = set()
Y
Yang Yang(Tony) 已提交
328
        params = list()
Y
Yang Yang 已提交
329 330 331 332 333 334 335 336
        for var in self.inputs:
            local_inputs.add(var.name)

        for op in current_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)
Y
Yang Yang(Tony) 已提交
337 338 339 340 341

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

Y
Yang Yang 已提交
342
        params = list(set(params))
Y
Yang Yang 已提交
343 344 345

        return [parent_block.var(name) for name in params]

346
    def _complete_op(self):
Y
Yang Yang 已提交
347 348 349 350 351 352 353
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

Y
Yang Yang 已提交
354 355 356 357 358 359 360 361 362 363
        self.outputs = [
            parent_block.create_var(
                name=o.name,
                shape=o.shape,
                dtype=o.dtype,
                lod_level=o.lod_level,
                persistable=o.persistable,
                stop_gradient=o.stop_gradient) for o in self.outputs
        ]

Y
Yang Yang 已提交
364
        inputs = [parent_block.var(i.name) for i in self.inputs]
Y
Yang Yang 已提交
365
        outputs = [parent_block.var(o.name) for o in self.outputs]
Y
Yang Yang 已提交
366 367 368 369 370 371 372 373

        parent_block.append_op(
            type='parallel_do',
            inputs={
                'inputs': inputs,
                'parameters': self.get_parameters(),
                'places': self.places
            },
Y
Yang Yang 已提交
374
            outputs={'outputs': outputs,
Y
Yang Yang 已提交
375
                     'parallel_scopes': [step_scope]},
Y
Yang Yang 已提交
376 377
            attrs={'sub_block': current_block,
                   'use_nccl': self.use_nccl})
Y
Yang Yang 已提交
378 379 380 381 382 383 384


class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
385 386
    """

Y
Yu Yang 已提交
387
    def __init__(self, rnn):
Y
Yang Yang 已提交
388 389 390 391
        if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)):
            raise TypeError(
                "BlockGuardWithCompletion takes a StaticRNN or ParallelDo")
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
392 393 394 395
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
396
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
397 398

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
399 400
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
401
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
402
        self.rnn._complete_op()
Y
Yang Yang 已提交
403 404
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
405 406 407 408


class StaticRNNMemoryLink(object):
    """
409 410 411 412
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
413 414 415 416 417 418 419 420 421


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
422 423 424 425 426 427 428 429 430
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
431 432 433 434 435 436
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
437 438 439 440
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

441 442
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
443 444 445 446 447 448 449 450
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
Y
Yang Yang 已提交
451
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
452 453 454 455 456

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

457 458 459 460 461 462 463
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
464 465 466 467 468 469 470 471 472
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
473 474
        self._assert_in_rnn_block_('memory')
        if init is None:
475
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
476
                raise ValueError(
477
                    "if init is None, memory at least need shape and batch_ref")
478
            parent_block = self._parent_block()
Y
Yu Yang 已提交
479 480
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
481
            boot_var = parent_block.create_var(
482 483
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
484
                dtype=batch_ref.dtype,
485
                persistable=False)
Y
Yu Yang 已提交
486 487

            parent_block.append_op(
488 489
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
490 491 492
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
493
                    'shape': boot_var.shape,
F
fengjiayi 已提交
494
                    'dtype': boot_var.dtype,
495 496
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
497 498 499 500 501
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
502
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
503
                dtype=init.dtype,
Y
Yu Yang 已提交
504 505 506 507 508 509 510 511 512 513
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
514 515
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
516 517 518
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
519
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
520 521 522 523 524 525 526 527
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
528
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
529 530 531 532
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
533
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
534

535
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
536 537
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
538
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
539 540 541 542 543 544 545 546 547 548 549 550

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

551
    def _parent_block(self):
552
        prog = self.helper.main_program
Y
Yu Yang 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

568
    def _complete_op(self):
569 570
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
571
        parent_block = self._parent_block()
Y
Yu Yang 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
605
        for _, mem in list(self.memories.items()):
Y
Yu Yang 已提交
606 607 608 609
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
610
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
611 612 613 614 615

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
616
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
632
                'sub_block': rnn_block
Y
Yu Yang 已提交
633
            })
Y
Yu Yang 已提交
634 635


Y
Yang Yang(Tony) 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
651
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
652 653 654 655
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
656 657 658 659 660 661 662 663 664 665
    """
    while loop control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str): The name of this layer.

    Examples:
          .. code-block:: python

X
Xin Pan 已提交
666 667 668
            d0 = layers.data("d0", shape=[10], dtype='float32')
            data_array = layers.array_write(x=d0, i=i)
            array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
X
Xin Pan 已提交
669

X
Xin Pan 已提交
670 671 672 673 674 675 676
            cond = layers.less_than(x=i, y=array_len)
            while_op = layers.While(cond=cond)
            with while_op.block():
                d = layers.array_read(array=data_array, i=i)
                i = layers.increment(x=i, in_place=True)
                layers.array_write(result, i=i, array=d)
                layers.less_than(x=i, y=array_len, cond=cond)
X
Xin Pan 已提交
677 678
    """

Y
Yang Yang(Tony) 已提交
679 680 681 682
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

683 684
    def __init__(self, cond, name=None):
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
685 686 687 688
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
689
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
690 691 692 693 694 695 696 697
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

698
    def _complete(self):
Y
Yang Yang(Tony) 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
727 728 729 730
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
731 732 733 734
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
735
            attrs={'sub_block': while_block})
Y
Yang Yang(Tony) 已提交
736 737


738
def lod_rank_table(x, level=0):
Y
yangyaming 已提交
739 740 741
    """LoD Rank Table Operator. Given an input variable **x** and a level number
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
742
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
743 744 745
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
746 747 748 749

        .. code-block:: text

            x is a LoDTensor:
750 751
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
752 753
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
754 755 756
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
757

Y
yangyaming 已提交
758 759 760 761 762 763 764 765 766
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
767 768 769 770

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
771 772
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
773 774 775 776 777 778 779 780

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
781
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
782
            out = layers.lod_rank_table(x=x, level=0)
783
    """
Y
Yu Yang 已提交
784 785 786
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
787
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
788 789 790 791 792 793
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
794 795


Y
yuyang18 已提交
796
@templatedoc()
797
def max_sequence_len(rank_table):
Y
yuyang18 已提交
798 799 800 801 802 803 804 805
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
806 807

    Args:
Y
yuyang18 已提交
808
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
809 810

    Returns:
Y
yuyang18 已提交
811
        ${out_comment}.
F
fengjiayi 已提交
812 813 814 815 816 817 818 819 820 821
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


822
def lod_tensor_to_array(x, table):
823
    """
F
fengjiayi 已提交
824 825
    Convert a LoDTensor to a LoDTensorArray.

826 827 828 829 830
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
831
    Users should not use it directly.
832 833

    Args:
F
fengjiayi 已提交
834
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
835 836
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
837
                                descending order. It is generally generated
F
fengjiayi 已提交
838
                                by `layers.lod_rank_table()` API.
839 840

    Returns:
F
fengjiayi 已提交
841
        Variable: The LoDTensorArray that has been converted from the input tensor.
842 843 844 845 846 847 848

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
849
    """
850 851
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
852
        name=unique_name.generate("lod_tensor_to_array"),
853
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
854
        dtype=x.dtype)
855 856 857 858 859 860 861 862
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


863
def array_to_lod_tensor(x, table):
864
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
865 866

    Args:
867
        x (Variable|list): The lod tensor array to be converted to a tensor.
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
883
    """
884
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
885
    tmp = helper.create_tmp_variable(dtype=x.dtype)
886 887 888 889 890 891 892 893
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


894
def increment(x, value=1.0, in_place=True):
895 896
    """
    This function performs an operation that increments each value in the
897 898 899 900 901 902 903 904 905
    input :math:`x` by an amount: :math:`value` as mentioned in the input
    parameter. This operation is performed in-place by default.

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
906
        Variable: The elementwise-incremented object.
907 908 909 910 911 912

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
913
    """
Y
Yu Yang 已提交
914
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
915
    if not in_place:
F
fengjiayi 已提交
916
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
917 918
    else:
        out = x
Y
Yu Yang 已提交
919 920 921
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
922
        outputs={'Out': [out]},
923
        attrs={'step': float(value)})
Y
Yang Yu 已提交
924
    return out
Y
Yu Yang 已提交
925 926


927
def array_write(x, i, array=None):
928 929 930 931 932
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
933 934 935

    Args:
        x (Variable|list): The input tensor from which the data will be read.
936 937 938 939 940 941 942 943
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

944
    Returns:
945
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
946 947

    Examples:
D
dzhwinter 已提交
948
        .. code-block:: python
949 950 951 952

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
953
    """
Y
Yu Yang 已提交
954 955 956 957 958
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
959
            dtype=x.dtype)
Y
Yu Yang 已提交
960 961 962 963 964 965 966 967
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


968
def create_array(dtype):
969
    """
Q
qiaolongfei 已提交
970
    **Create LoDTensorArray**
971

Q
qiaolongfei 已提交
972 973
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
974 975

    Args:
Q
qiaolongfei 已提交
976
        dtype (int|float): The data type of the elements in the lod_tensor_array.
977 978

    Returns:
979
        Variable: The lod_tensor_array variable storing the elements of data type.
980 981 982 983 984 985 986

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
987 988 989 990 991 992 993
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
994 995
@templatedoc()
def less_than(x, y, force_cpu=None, cond=None, **ignored):
996
    """
Y
yuyang18 已提交
997
    ${comment}
998

Y
yuyang18 已提交
999 1000
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
1001 1002

    Args:
Y
yuyang18 已提交
1003 1004 1005
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1006 1007 1008
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1009
        ${out_comment}.
1010
    """
Y
Yang Yang(Tony) 已提交
1011 1012 1013 1014 1015
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

Y
yuyang18 已提交
1016 1017 1018 1019 1020 1021
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1022
    helper.append_op(
J
JiayiFeng 已提交
1023 1024 1025 1026
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1027
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1028 1029 1030
    return cond


1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
def equal(x, y, cond=None, **ignored):
    """
    **equal**

    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


1061
def array_read(array, i):
1062 1063
    """
    This function performs the operation to read the data in as an
1064
    LOD_TENSOR_ARRAY.
1065 1066 1067 1068 1069 1070

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
1071

1072
        And:
1073

1074 1075 1076 1077 1078 1079
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1080
    Args:
1081 1082 1083
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1084 1085
    Returns:
        Variable: The tensor type variable that has the data written to it.
1086

K
kavyasrinet 已提交
1087
    Examples:
1088 1089
        .. code-block:: python

K
kavyasrinet 已提交
1090 1091 1092
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
1093
    """
Y
Yu Yang 已提交
1094 1095 1096 1097 1098
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1099
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1100 1101 1102 1103 1104 1105
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1106 1107


1108
def shrink_memory(x, i, table):
1109
    """
Y
yuyang18 已提交
1110
    This function creates an operator to shrink rnn memory using the RankTable
1111
    as mentioned in the input parameter.
Y
yuyang18 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1132
    """
Y
Yang Yu 已提交
1133
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1134
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1135
    helper.append_op(
Y
Yang Yu 已提交
1136
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1137 1138 1139 1140 1141 1142
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1143 1144


1145
def array_length(array):
1146
    """
Q
qiaolongfei 已提交
1147
    **Get the Length of Input LoDTensorArray**
1148 1149

    This function performs the operation to find the length of the input
1150
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1151

1152 1153
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1154 1155 1156 1157 1158 1159 1160 1161
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1162
        .. code-block:: python
K
kavyasrinet 已提交
1163 1164 1165 1166 1167

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1168

1169
    """
Y
Yang Yu 已提交
1170 1171 1172 1173 1174 1175
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1176 1177 1178


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1179
    """
1180 1181 1182
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1183 1184 1185
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1227
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1228 1229 1230 1231
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1232
        self.is_scalar_condition = is_scalar_condition
1233
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1258
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1259 1260 1261 1262 1263
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
X
xuwei06 已提交
1264
            if var_name in intermediate
Y
Yu Yang 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1277 1278 1279 1280 1281 1282 1283
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1284
    """
Q
qiaolongfei 已提交
1285 1286
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1287 1288 1289 1290

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1291

Q
qiaolongfei 已提交
1292
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1293 1294 1295 1296

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1297 1298 1299 1300

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
            lr = fluid.layers.tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
            two_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=2.0)

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1313
                with switch.case(global_step == zero_var):
Q
qiaolongfei 已提交
1314 1315 1316
                    fluid.layers.tensor.assign(input=one_var, output=lr)
                with switch.default():
                    fluid.layers.tensor.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1317 1318 1319

    """

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
Q
qiaolongfei 已提交
1349 1350
        """
        create a default case for this switch
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1419

X
improve  
Xin Pan 已提交
1420
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1421
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1422 1423
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1424 1425
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1426 1427
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1428 1429 1430 1431
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1432 1433 1434
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1435 1436 1437
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1438 1439 1440 1441
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1442
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1443 1444
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1445
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1457
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1458
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1459
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1460
                dtype=x.dtype)
Y
Yu Yang 已提交
1461 1462

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1463
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1464
                dtype=x.dtype)
Y
Yu Yang 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1483
    def _parent_block(self):
Y
Yu Yang 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1499
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1500 1501 1502 1503 1504
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1505 1506
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1507
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1508 1509 1510
            out_table.append(outside_out)

            # assign local var to outside
1511
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1512 1513 1514 1515

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1516
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1535
                    level=0))
Y
Yu Yang 已提交
1536
        return rlist
1537 1538 1539


class DynamicRNN(object):
Y
yuyang18 已提交
1540
    """
Y
yuyang18 已提交
1541 1542 1543
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

    The input lod must be set. Please reference `lod_tensor`

    >>> import paddle.fluid as fluid
    >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
    >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
    >>>                                    is_sparse=True)
    >>>
    >>> drnn = fluid.layers.DynamicRNN()
    >>> with drnn.block():
    >>>     word = drnn.step_input(embedding)
    >>>     prev = drnn.memory(shape=[200])
    >>>     hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
    >>>     drnn.update_memory(prev, hidden)  # set prev to hidden
    >>>     drnn.output(hidden)
    >>>
    >>> # last is the last time step of rnn. It is the encoding result.
    >>> last = fluid.layers.sequence_last_step(drnn())

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
    """
1572 1573 1574 1575
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1576 1577
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1578 1579 1580 1581
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1582 1583
        self.zero_idx = fill_constant(
            shape=[1], value=0, dtype='int64', force_cpu=True)
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
Y
yuyang18 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602
        """
        Mark a sequence as a dynamic RNN input.
        Args:
            x(Variable): The input sequence.

        Returns:
            The current timestep in the input sequence.

        """
1603 1604 1605
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1606
                "step_input() can only take a Variable as its input.")
1607 1608 1609
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1610
                name=unique_name.generate('lod_rank_table'),
1611 1612 1613 1614 1615 1616 1617
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1618 1619
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1630 1631
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1632 1633

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1634
            name=unique_name.generate('dynamic_rnn_input_array'),
1635 1636 1637 1638 1639 1640 1641 1642
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1643
        return array_read(array=input_array, i=self.step_idx)
1644

Y
yangyaming 已提交
1645
    def static_input(self, x):
Y
yuyang18 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654
        """
        Mark a variable as a RNN input. The input will not be scattered into
        time steps.
        Args:
            x(Variable): The input variable.

        Returns:
            The input variable that can access in RNN.
        """
Y
yangyaming 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1664
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

1674 1675
    @contextlib.contextmanager
    def block(self):
Y
yuyang18 已提交
1676 1677 1678 1679
        """
        The block for user to define operators in RNN. See the class docstring
        for more details.
        """
1680 1681
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1682 1683
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1684 1685 1686 1687
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1688
            increment(x=self.step_idx, value=1.0, in_place=True)
1689 1690

            for new_mem, mem_array in self.mem_link:
1691 1692
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1693 1694 1695 1696 1697
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1698 1699 1700 1701 1702

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1703
                    x=each_array, table=self.lod_rank_table))
1704 1705

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1706 1707 1708
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1709
        if self.status != DynamicRNN.AFTER_RNN:
1710 1711
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1712 1713 1714 1715 1716
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1717 1718 1719 1720 1721 1722
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1723
        """
Y
yuyang18 已提交
1724
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>> boot_memory = fluid.layers.data(
        >>>                 name='boot', dtype='float32', shape=[10])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(init=boot_memory, need_reorder=True)
        >>>     hidden = fluid.layers.fc(
        >>>                 input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(shape=[10], dtype='float32', value=0)
        >>>     hidden = fluid.layers.fc(
        >>>             input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Args:
            init(Variable|None): The initialized variable.

            shape(list|tuple): The memory shape. NOTE the shape does not contain
            batch_size.

            value(float): the initalized value.

            need_reorder(bool): True if the initialized memory depends on the
            input sample.

            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
            the memory variable.

        """
1787 1788 1789 1790 1791 1792
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1793 1794 1795 1796 1797 1798 1799 1800
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1801
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1812
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1813
                name=unique_name.generate('dynamic_rnn_mem_array'),
1814 1815 1816 1817
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1818
                inputs={'X': init_tensor,
1819 1820
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1821
            retv = array_read(array=mem_array, i=self.step_idx)
1822
            retv = shrink_memory(
1823
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1824 1825 1826 1827 1828 1829 1830 1831 1832
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1833
                name=unique_name.generate('mem_init'), dtype=dtype)
1834
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1835 1836
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889
        """
        mark the RNN output variables.

        Args:
            outputs: The output variables.

        Returns:
            None
        """
1890 1891 1892 1893
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1894
                name=unique_name.generate("_".join(
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1913 1914


1915
@autodoc()
Y
Yang Yu 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
1928 1929 1930 1931


def is_empty(x, cond=None, **ignored):
    """
F
fengjiayi 已提交
1932
    Test whether a Variable is empty.
1933 1934

    Args:
F
fengjiayi 已提交
1935
        x (Variable): The Variable to be tested.
1936
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
1937
                              of given 'x'. Default: None
1938 1939

    Returns:
F
fengjiayi 已提交
1940
        Variable: A bool scalar. True if 'x' is an empty Variable.
1941 1942 1943

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
1944
                   not bool.
1945 1946 1947 1948

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
1949 1950 1951
          res = fluid.layers.is_empty(x=input)
          # or:
          fluid.layers.is_empty(x=input, cond=res)
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond