nn.py 17.7 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce

from .. import core
from ..layers import utils
from . import layers
from ..framework import Variable, OpProtoHolder
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant
25
__all__ = ['Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding']
M
minqiyang 已提交
26 27


X
Xin Pan 已提交
28
class Conv2D(layers.Layer):
M
minqiyang 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 use_cudnn=True,
                 act=None,
                 param_attr=None,
                 bias_attr=None,
                 name=None,
                 dtype=core.VarDesc.VarType.FP32):
        assert param_attr is not False, "param_attr should not be False here."
M
minqiyang 已提交
44 45
        super(Conv2D, self).__init__(name=name, dtype=dtype)

X
Xin Pan 已提交
46
        # TODO(minqiyang): Move this to the top.
M
minqiyang 已提交
47 48 49 50 51 52
        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(
            type(self).__name__,
            param_attr=param_attr,
            bias_attr=bias_attr,
            dtype=dtype,
M
minqiyang 已提交
53 54
            name=name,
            act=act)
M
minqiyang 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
        self._num_channels = num_channels
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'

        if groups is None:
            num_filter_channels = num_channels
        else:
            if num_channels % groups != 0:
                raise ValueError("num_channels must be divisible by groups.")
            num_filter_channels = num_channels // groups
        filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
        filter_shape = [num_filters, int(num_filter_channels)] + filter_size

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * num_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self._filter_param = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        if self._use_cudnn:
            self._helper.create_variable(
                name="kCUDNNFwdAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            self._helper.create_variable(
                name="kCUDNNBwdDataAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            self._helper.create_variable(
                name="kCUDNNBwdFilterAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)

M
minqiyang 已提交
104 105
        self._bias_param = self._helper.create_parameter(
            attr=self._helper.bias_attr,
M
minqiyang 已提交
106
            shape=[num_filters],
M
minqiyang 已提交
107 108
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
109 110

    def forward(self, input):
M
minqiyang 已提交
111 112 113
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
114 115 116 117 118 119
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
M
minqiyang 已提交
120
            outputs={"Output": pre_bias},
M
minqiyang 已提交
121 122 123 124 125 126 127 128 129
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            })

M
minqiyang 已提交
130 131
        pre_act = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
M
minqiyang 已提交
132

M
minqiyang 已提交
133 134 135 136 137 138 139
        self._helper.append_op(
            type='elementwise_add',
            inputs={'X': [pre_bias],
                    'Y': [self._bias_param]},
            outputs={'Out': [pre_act]},
            attrs={'axis': 1})

M
minqiyang 已提交
140
        # Currently, we don't support inplace in imperative mode
M
minqiyang 已提交
141
        return self._helper.append_activation(pre_act)
M
minqiyang 已提交
142 143


X
Xin Pan 已提交
144
class Pool2D(layers.Layer):
M
minqiyang 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
                 exclusive=True,
                 name=None,
                 dtype=core.VarDesc.VarType.FP32):
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

        super(Pool2D, self).__init__(name=name, dtype=dtype)

M
minqiyang 已提交
171 172 173
        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(type(self).__name__, dtype=dtype, name=name)

M
minqiyang 已提交
174 175 176 177 178 179 180 181 182 183 184 185
        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
M
minqiyang 已提交
186 187
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
188 189 190
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
191
            outputs={"Out": pool_out},
M
minqiyang 已提交
192 193 194 195 196 197 198 199 200 201 202
            attrs={
                "pooling_type": self._pool_type,
                "ksize": self._pool_size,
                "global_pooling": self._global_pooling,
                "strides": self._pool_stride,
                "paddings": self._pool_padding,
                "use_cudnn": self._use_cudnn,
                "ceil_mode": self._ceil_mode,
                "use_mkldnn": False,
                "exclusive": self._exclusive,
            })
M
minqiyang 已提交
203
        return pool_out
M
minqiyang 已提交
204 205


X
Xin Pan 已提交
206
class FC(layers.Layer):
M
minqiyang 已提交
207
    def __init__(self,
M
minqiyang 已提交
208
                 size,
M
minqiyang 已提交
209
                 param_attr=None,
X
Xin Pan 已提交
210
                 bias_attr=None,
M
minqiyang 已提交
211
                 num_flatten_dims=1,
X
Xin Pan 已提交
212 213 214
                 dtype=core.VarDesc.VarType.FP32,
                 act=None,
                 name=None):
M
minqiyang 已提交
215
        super(FC, self).__init__()
M
minqiyang 已提交
216

M
minqiyang 已提交
217
        self._size = size
M
minqiyang 已提交
218 219
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
M
minqiyang 已提交
220
        from ..layer_helper import LayerHelper
X
Xin Pan 已提交
221
        self._helper = LayerHelper(
X
Xin Pan 已提交
222 223 224 225 226
            'FC',
            param_attr=param_attr,
            bias_attr=bias_attr,
            act=act,
            name=name)
X
Xin Pan 已提交
227 228

    def parameters(self):
X
Xin Pan 已提交
229
        return [self._w, self._b]
M
minqiyang 已提交
230 231 232 233 234

    def _build_once(self, input):
        input_shape = input.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
M
minqiyang 已提交
235
        ] + [self._size]
M
minqiyang 已提交
236 237 238 239 240 241
        self._w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)

242 243 244 245 246 247 248 249 250
        if self._helper.bias_attr:
            size = list([self._size])
            self._b = self._helper.create_parameter(
                attr=self._helper.bias_attr,
                shape=size,
                dtype=self._dtype,
                is_bias=True)
        else:
            self._b = None
M
minqiyang 已提交
251 252

    def forward(self, input):
M
minqiyang 已提交
253
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
254 255 256 257
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._w},
M
minqiyang 已提交
258
            outputs={"Out": tmp},
M
minqiyang 已提交
259 260 261 262 263
            attrs={
                "x_num_col_dims": self._num_flatten_dims,
                "y_num_col_dims": 1
            })

M
minqiyang 已提交
264
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
265 266
        self._helper.append_op(
            type="sum",
M
minqiyang 已提交
267
            inputs={"X": [tmp]},
M
minqiyang 已提交
268
            outputs={"Out": pre_bias},
M
minqiyang 已提交
269
            attrs={"use_mkldnn": False})
X
Xin Pan 已提交
270

271 272 273
        if self._b:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
X
Xin Pan 已提交
274 275
            self._helper.append_op(
                type='elementwise_add',
276
                inputs={'X': [pre_bias],
X
Xin Pan 已提交
277
                        'Y': [self._b]},
278 279 280 281
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims})
        else:
            pre_activation = pre_bias
M
minqiyang 已提交
282
        # Currently, we don't support inplace in imperative mode
M
minqiyang 已提交
283
        return self._helper.append_activation(pre_activation)
M
minqiyang 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309


class BatchNorm(layers.Layer):
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 dtype=core.VarDesc.VarType.FP32,
                 data_layout='NCHW',
                 in_place=False,
                 name=None,
                 moving_mean_name=None,
                 moving_variance_name=None,
                 do_model_average_for_mean_and_var=False,
                 fuse_with_relu=False,
                 use_global_stats=False):
        super(BatchNorm, self).__init__()

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(
M
minqiyang 已提交
310 311 312 313 314
            'batch_norm',
            param_attr=param_attr,
            bias_attr=bias_attr,
            name=name,
            act=act)
M
minqiyang 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

        if dtype == core.VarDesc.VarType.FP16:
            self._dtype = core.VarDesc.VarType.FP32
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
        self._scale = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

M
minqiyang 已提交
330 331 332 333
        # TODO(minqiyang): change stop_gradient sign to trainable to align with static graph
        #  # setting stop_gradient=True to reduce computation
        #  if use_global_stats and self._helper.param_attr.learning_rate == 0.:
        #  self._scale.stop_gradient = True
M
minqiyang 已提交
334 335 336 337 338 339

        self._bias = self._helper.create_parameter(
            attr=self._helper.bias_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
340 341 342 343
        # TODO(minqiyang): change stop_gradient sign to trainable to align with static graph
        #  # setting stop_gradient=True to reduce computation
        #  if use_global_stats and self._helper.bias_attr.learning_rate == 0.:
        #  self._bias.stop_gradient = True
M
minqiyang 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

        self._mean = self._helper.create_parameter(
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
        self._mean.stop_gradient = True

        self._variance = self._helper.create_parameter(
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
        self._variance.stop_gradient = True

        self._in_place = in_place
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
        self._fuse_with_relu = fuse_with_relu
        self._use_global_stats = use_global_stats

    def _build_once(self, input):
        pass

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        saved_mean = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
383
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
384
        saved_variance = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
385
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
386
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
387
            self._dtype)
M
minqiyang 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

        self._helper.append_op(
            type="batch_norm",
            inputs={
                "X": input,
                "Scale": self._scale,
                "Bias": self._bias,
                "Mean": self._mean,
                "Variance": self._variance
            },
            outputs={
                "Y": batch_norm_out,
                "MeanOut": mean_out,
                "VarianceOut": variance_out,
                "SavedMean": saved_mean,
                "SavedVariance": saved_variance
            },
            attrs={
                "momentum": self._momentum,
                "epsilon": self._epsilon,
                "is_test": self._is_test,
                "use_mkldnn": False,
                "fuse_with_relu": self._fuse_with_relu,
                "use_global_stats": self._use_global_stats
            })

M
minqiyang 已提交
414
        # Currently, we don't support inplace in imperative mode
M
minqiyang 已提交
415
        return self._helper.append_activation(batch_norm_out)
416 417


418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
class Embedding(layers.Layer):
    """
    **Embedding Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    All the input variables are passed in as local variables to the LayerHelper
    constructor.

    Args:
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
        is_distributed(bool): Whether to run lookup table from remote parameter server.
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
            with zeros whenever lookup encounters it in :attr:`input`. If
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc

    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          dict_size = len(dataset.ids)
          input = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
          embedding = fluid.imperative.Embedding(size=[dict_size, 16])
          fc = embedding(input)
    """

456 457 458 459 460 461 462 463
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):

464
        super(Embedding, self).__init__()
465 466 467 468 469
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed

        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
470
            size[0] + padding_idx)
471 472 473

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
474
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

        from ..layer_helper import LayerHelper
        self._helper = LayerHelper('embedding', param_attr=param_attr)
        self._w = self._helper.create_parameter(
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='lookup_table',
            inputs={'Ids': input,
                    'W': self._w},
            outputs={'Out': out},
            attrs={
                'is_sparse': self._is_sparse,
                'is_distributed': self._is_distributed,
                'remote_prefetch': self._remote_prefetch,
                'padding_idx': self._padding_idx
            })

        return out