nn.py 16.2 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce

from .. import core
from ..layers import utils
from . import layers
from ..framework import Variable, OpProtoHolder
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant
__all__ = [
    'Conv2D',
    'Pool2D',
    'FC',
M
minqiyang 已提交
29
    'BatchNorm',
30
    'EMBEDDING'
M
minqiyang 已提交
31 32 33
]


X
Xin Pan 已提交
34
class Conv2D(layers.Layer):
M
minqiyang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 use_cudnn=True,
                 act=None,
                 param_attr=None,
                 bias_attr=None,
                 name=None,
                 dtype=core.VarDesc.VarType.FP32):
        assert param_attr is not False, "param_attr should not be False here."
M
minqiyang 已提交
50 51
        super(Conv2D, self).__init__(name=name, dtype=dtype)

X
Xin Pan 已提交
52
        # TODO(minqiyang): Move this to the top.
M
minqiyang 已提交
53 54 55 56 57 58
        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(
            type(self).__name__,
            param_attr=param_attr,
            bias_attr=bias_attr,
            dtype=dtype,
M
minqiyang 已提交
59 60
            name=name,
            act=act)
M
minqiyang 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
        self._num_channels = num_channels
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'

        if groups is None:
            num_filter_channels = num_channels
        else:
            if num_channels % groups != 0:
                raise ValueError("num_channels must be divisible by groups.")
            num_filter_channels = num_channels // groups
        filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
        filter_shape = [num_filters, int(num_filter_channels)] + filter_size

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * num_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self._filter_param = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        if self._use_cudnn:
            self._helper.create_variable(
                name="kCUDNNFwdAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            self._helper.create_variable(
                name="kCUDNNBwdDataAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            self._helper.create_variable(
                name="kCUDNNBwdFilterAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)

M
minqiyang 已提交
110 111
        self._bias_param = self._helper.create_parameter(
            attr=self._helper.bias_attr,
M
minqiyang 已提交
112
            shape=[num_filters],
M
minqiyang 已提交
113 114
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
115 116

    def forward(self, input):
M
minqiyang 已提交
117 118 119
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
120 121 122 123 124 125
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
M
minqiyang 已提交
126
            outputs={"Output": pre_bias},
M
minqiyang 已提交
127 128 129 130 131 132 133 134 135
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            })

M
minqiyang 已提交
136 137
        pre_act = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
M
minqiyang 已提交
138

M
minqiyang 已提交
139 140 141 142 143 144 145
        self._helper.append_op(
            type='elementwise_add',
            inputs={'X': [pre_bias],
                    'Y': [self._bias_param]},
            outputs={'Out': [pre_act]},
            attrs={'axis': 1})

M
minqiyang 已提交
146
        # Currently, we don't support inplace in imperative mode
M
minqiyang 已提交
147
        return self._helper.append_activation(pre_act)
M
minqiyang 已提交
148 149


X
Xin Pan 已提交
150
class Pool2D(layers.Layer):
M
minqiyang 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
                 exclusive=True,
                 name=None,
                 dtype=core.VarDesc.VarType.FP32):
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

        super(Pool2D, self).__init__(name=name, dtype=dtype)

M
minqiyang 已提交
177 178 179
        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(type(self).__name__, dtype=dtype, name=name)

M
minqiyang 已提交
180 181 182 183 184 185 186 187 188 189 190 191
        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
M
minqiyang 已提交
192 193
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
194 195 196
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
197
            outputs={"Out": pool_out},
M
minqiyang 已提交
198 199 200 201 202 203 204 205 206 207 208
            attrs={
                "pooling_type": self._pool_type,
                "ksize": self._pool_size,
                "global_pooling": self._global_pooling,
                "strides": self._pool_stride,
                "paddings": self._pool_padding,
                "use_cudnn": self._use_cudnn,
                "ceil_mode": self._ceil_mode,
                "use_mkldnn": False,
                "exclusive": self._exclusive,
            })
M
minqiyang 已提交
209
        return pool_out
M
minqiyang 已提交
210 211


X
Xin Pan 已提交
212
class FC(layers.Layer):
M
minqiyang 已提交
213
    def __init__(self,
M
minqiyang 已提交
214
                 size,
M
minqiyang 已提交
215
                 param_attr=None,
X
Xin Pan 已提交
216
                 bias_attr=None,
M
minqiyang 已提交
217
                 num_flatten_dims=1,
X
Xin Pan 已提交
218 219 220
                 dtype=core.VarDesc.VarType.FP32,
                 act=None,
                 name=None):
M
minqiyang 已提交
221
        super(FC, self).__init__()
M
minqiyang 已提交
222

M
minqiyang 已提交
223
        self._size = size
M
minqiyang 已提交
224 225
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
M
minqiyang 已提交
226
        from ..layer_helper import LayerHelper
X
Xin Pan 已提交
227
        self._helper = LayerHelper(
X
Xin Pan 已提交
228 229 230 231 232
            'FC',
            param_attr=param_attr,
            bias_attr=bias_attr,
            act=act,
            name=name)
X
Xin Pan 已提交
233 234

    def parameters(self):
X
Xin Pan 已提交
235
        return [self._w, self._b]
M
minqiyang 已提交
236 237 238 239 240

    def _build_once(self, input):
        input_shape = input.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
M
minqiyang 已提交
241
        ] + [self._size]
M
minqiyang 已提交
242 243 244 245 246 247
        self._w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)

248 249 250 251 252 253 254 255 256
        if self._helper.bias_attr:
            size = list([self._size])
            self._b = self._helper.create_parameter(
                attr=self._helper.bias_attr,
                shape=size,
                dtype=self._dtype,
                is_bias=True)
        else:
            self._b = None
M
minqiyang 已提交
257 258

    def forward(self, input):
M
minqiyang 已提交
259
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
260 261 262 263
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._w},
M
minqiyang 已提交
264
            outputs={"Out": tmp},
M
minqiyang 已提交
265 266 267 268 269
            attrs={
                "x_num_col_dims": self._num_flatten_dims,
                "y_num_col_dims": 1
            })

M
minqiyang 已提交
270
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
271 272
        self._helper.append_op(
            type="sum",
M
minqiyang 已提交
273
            inputs={"X": [tmp]},
M
minqiyang 已提交
274
            outputs={"Out": pre_bias},
M
minqiyang 已提交
275
            attrs={"use_mkldnn": False})
X
Xin Pan 已提交
276

277 278 279
        if self._b:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
X
Xin Pan 已提交
280 281
            self._helper.append_op(
                type='elementwise_add',
282
                inputs={'X': [pre_bias],
X
Xin Pan 已提交
283
                        'Y': [self._b]},
284 285 286 287
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims})
        else:
            pre_activation = pre_bias
M
minqiyang 已提交
288
        # Currently, we don't support inplace in imperative mode
M
minqiyang 已提交
289
        return self._helper.append_activation(pre_activation)
M
minqiyang 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315


class BatchNorm(layers.Layer):
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 dtype=core.VarDesc.VarType.FP32,
                 data_layout='NCHW',
                 in_place=False,
                 name=None,
                 moving_mean_name=None,
                 moving_variance_name=None,
                 do_model_average_for_mean_and_var=False,
                 fuse_with_relu=False,
                 use_global_stats=False):
        super(BatchNorm, self).__init__()

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(
M
minqiyang 已提交
316 317 318 319 320
            'batch_norm',
            param_attr=param_attr,
            bias_attr=bias_attr,
            name=name,
            act=act)
M
minqiyang 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

        if dtype == core.VarDesc.VarType.FP16:
            self._dtype = core.VarDesc.VarType.FP32
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
        self._scale = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

M
minqiyang 已提交
336 337 338 339
        # TODO(minqiyang): change stop_gradient sign to trainable to align with static graph
        #  # setting stop_gradient=True to reduce computation
        #  if use_global_stats and self._helper.param_attr.learning_rate == 0.:
        #  self._scale.stop_gradient = True
M
minqiyang 已提交
340 341 342 343 344 345

        self._bias = self._helper.create_parameter(
            attr=self._helper.bias_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
346 347 348 349
        # TODO(minqiyang): change stop_gradient sign to trainable to align with static graph
        #  # setting stop_gradient=True to reduce computation
        #  if use_global_stats and self._helper.bias_attr.learning_rate == 0.:
        #  self._bias.stop_gradient = True
M
minqiyang 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

        self._mean = self._helper.create_parameter(
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
        self._mean.stop_gradient = True

        self._variance = self._helper.create_parameter(
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
        self._variance.stop_gradient = True

        self._in_place = in_place
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
        self._fuse_with_relu = fuse_with_relu
        self._use_global_stats = use_global_stats

    def _build_once(self, input):
        pass

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        saved_mean = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
389
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
390
        saved_variance = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
391
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
392
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
393
            self._dtype)
M
minqiyang 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

        self._helper.append_op(
            type="batch_norm",
            inputs={
                "X": input,
                "Scale": self._scale,
                "Bias": self._bias,
                "Mean": self._mean,
                "Variance": self._variance
            },
            outputs={
                "Y": batch_norm_out,
                "MeanOut": mean_out,
                "VarianceOut": variance_out,
                "SavedMean": saved_mean,
                "SavedVariance": saved_variance
            },
            attrs={
                "momentum": self._momentum,
                "epsilon": self._epsilon,
                "is_test": self._is_test,
                "use_mkldnn": False,
                "fuse_with_relu": self._fuse_with_relu,
                "use_global_stats": self._use_global_stats
            })

M
minqiyang 已提交
420
        # Currently, we don't support inplace in imperative mode
M
minqiyang 已提交
421
        return self._helper.append_activation(batch_norm_out)
422 423
        outputs={'Out': [bias_out]},

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440


class EMBEDDING(layers.Layer):
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):

        super(EMBEDDING, self).__init__()
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed

        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
441
                size[0] + padding_idx)
442 443 444

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
445
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

        from ..layer_helper import LayerHelper
        self._helper = LayerHelper('embedding', param_attr=param_attr)

    def _build_once(self, input):
        self._w = self._helper.create_parameter(
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='lookup_table',
            inputs={'Ids': input,
                    'W': self._w},
            outputs={'Out': out},
            attrs={
                'is_sparse': self._is_sparse,
                'is_distributed': self._is_distributed,
                'remote_prefetch': self._remote_prefetch,
                'padding_idx': self._padding_idx
            })

        return out