cascade_rcnn.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid

from ppdet.core.workspace import register

__all__ = ['CascadeRCNN']


@register
class CascadeRCNN(object):
    """
    Cascade R-CNN architecture, see https://arxiv.org/abs/1712.00726

    Args:
        backbone (object): backbone instance
        rpn_head (object): `RPNhead` instance
        bbox_assigner (object): `BBoxAssigner` instance
        roi_extractor (object): ROI extractor instance
        bbox_head (object): `BBoxHead` instance
        fpn (object): feature pyramid network instance
    """

    __category__ = 'architecture'
    __inject__ = [
        'backbone', 'fpn', 'rpn_head', 'bbox_assigner', 'roi_extractor',
        'bbox_head'
    ]

    def __init__(self,
                 backbone,
                 rpn_head,
                 roi_extractor='FPNRoIAlign',
                 bbox_head='CascadeBBoxHead',
                 bbox_assigner='CascadeBBoxAssigner',
52
                 rpn_only=False,
53 54 55 56 57 58 59 60 61
                 fpn='FPN'):
        super(CascadeRCNN, self).__init__()
        assert fpn is not None, "cascade RCNN requires FPN"
        self.backbone = backbone
        self.fpn = fpn
        self.rpn_head = rpn_head
        self.bbox_assigner = bbox_assigner
        self.roi_extractor = roi_extractor
        self.bbox_head = bbox_head
62
        self.rpn_only = rpn_only
63 64 65 66 67 68 69 70 71 72 73 74
        # Cascade local cfg
        self.cls_agnostic_bbox_reg = 2
        (brw0, brw1, brw2) = self.bbox_assigner.bbox_reg_weights
        self.cascade_bbox_reg_weights = [
            [1. / brw0, 1. / brw0, 2. / brw0, 2. / brw0],
            [1. / brw1, 1. / brw1, 2. / brw1, 2. / brw1],
            [1. / brw2, 1. / brw2, 2. / brw2, 2. / brw2]
        ]
        self.cascade_rcnn_loss_weight = [1.0, 0.5, 0.25]

    def build(self, feed_vars, mode='train'):
        im = feed_vars['image']
W
wangguanzhong 已提交
75 76 77 78 79 80 81 82 83 84 85
        assert mode in ['train', 'test'], \
            "only 'train' and 'test' mode is supported"
        if mode == 'train':
            required_fields = [
                'gt_label', 'gt_box', 'gt_mask', 'is_crowd', 'im_info'
            ]
        else:
            required_fields = ['im_shape', 'im_info']
        for var in required_fields:
            assert var in feed_vars, \
                "{} has no {} field".format(feed_vars, var)
86
        im_info = feed_vars['im_info']
W
wangguanzhong 已提交
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        if mode == 'train':
            gt_box = feed_vars['gt_box']
            is_crowd = feed_vars['is_crowd']

        # backbone
        body_feats = self.backbone(im)
        # body_feat_names = list(body_feats.keys())

        # FPN
        if self.fpn is not None:
            body_feats, spatial_scale = self.fpn.get_output(body_feats)

        # rpn proposals
        rpn_rois = self.rpn_head.get_proposals(body_feats, im_info, mode=mode)

        if mode == 'train':
            rpn_loss = self.rpn_head.get_loss(im_info, gt_box, is_crowd)
105 106
        else:
            if self.rpn_only:
W
wangguanzhong 已提交
107 108
                im_scale = fluid.layers.slice(
                    im_info, [1], starts=[2], ends=[3])
109 110
                im_scale = fluid.layers.sequence_expand(im_scale, rpn_rois)
                rois = rpn_rois / im_scale
111
                return {'proposal': rois}
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

        proposal_list = []
        roi_feat_list = []
        rcnn_pred_list = []
        rcnn_target_list = []

        proposals = None
        bbox_pred = None
        for i in range(3):
            if i > 0:
                refined_bbox = self._decode_box(
                    proposals,
                    bbox_pred,
                    curr_stage=i - 1, )
            else:
                refined_bbox = rpn_rois

            if mode == 'train':
                outs = self.bbox_assigner(
                    input_rois=refined_bbox, feed_vars=feed_vars, curr_stage=i)

                proposals = outs[0]
                rcnn_target_list.append(outs)
            else:
                proposals = refined_bbox
            proposal_list.append(proposals)

            # extract roi features
            roi_feat = self.roi_extractor(body_feats, proposals, spatial_scale)
            roi_feat_list.append(roi_feat)

            # bbox head
            cls_score, bbox_pred = self.bbox_head.get_output(
                roi_feat,
                wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i],
                name='_' + str(i + 1) if i > 0 else '')
            rcnn_pred_list.append((cls_score, bbox_pred))

        if mode == 'train':
            loss = self.bbox_head.get_loss(rcnn_pred_list, rcnn_target_list,
                                           self.cascade_rcnn_loss_weight)
            loss.update(rpn_loss)
            total_loss = fluid.layers.sum(list(loss.values()))
            loss.update({'loss': total_loss})
            return loss
        else:
            pred = self.bbox_head.get_prediction(
W
wangguanzhong 已提交
159 160 161
                im_info, feed_vars['im_shape'], roi_feat_list, rcnn_pred_list,
                proposal_list, self.cascade_bbox_reg_weights,
                self.cls_agnostic_bbox_reg)
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
            return pred

    def _decode_box(self, proposals, bbox_pred, curr_stage):
        rcnn_loc_delta_r = fluid.layers.reshape(
            bbox_pred, (-1, self.cls_agnostic_bbox_reg, 4))
        # only use fg box delta to decode box
        rcnn_loc_delta_s = fluid.layers.slice(
            rcnn_loc_delta_r, axes=[1], starts=[1], ends=[2])
        refined_bbox = fluid.layers.box_coder(
            prior_box=proposals,
            prior_box_var=self.cascade_bbox_reg_weights[curr_stage],
            target_box=rcnn_loc_delta_s,
            code_type='decode_center_size',
            box_normalized=False,
            axis=1, )
        refined_bbox = fluid.layers.reshape(refined_bbox, shape=[-1, 4])

        return refined_bbox

    def train(self, feed_vars):
        return self.build(feed_vars, 'train')

    def eval(self, feed_vars):
        return self.build(feed_vars, 'test')

    def test(self, feed_vars):
        return self.build(feed_vars, 'test')