concat.cc 4.0 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/concat.h"
16
#include <vector>
C
chengduoZH 已提交
17 18 19 20 21 22

namespace paddle {
namespace operators {
namespace math {

/*
C
chengduoZH 已提交
23
 * All tensors' dimension should be the same and the values of
24
 * each dimension must be the same, except the axis dimension.
C
chengduoZH 已提交
25 26 27 28 29
 */
template <typename T>
class ConcatFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
30
                  const std::vector<framework::Tensor>& input, const int axis,
C
chengduoZH 已提交
31
                  framework::Tensor* output) {
C
chengduoZH 已提交
32
    // TODO(zcd): Add input data validity checking
C
chengduoZH 已提交
33 34 35 36 37 38 39 40 41
    int num = input.size();

    int rows = 1;
    auto dim_0 = input[0].dims();
    for (int i = 0; i < axis; ++i) {
      rows *= dim_0[i];
    }
    int out_rows = rows, out_cols = 0;

C
chengduoZH 已提交
42
    std::vector<int64_t> input_cols(input.size());
C
chengduoZH 已提交
43 44 45
    for (int i = 0; i < num; ++i) {
      int t_cols = input[i].numel() / rows;
      out_cols += t_cols;
C
chengduoZH 已提交
46
      input_cols[i] = t_cols;
C
chengduoZH 已提交
47
    }
X
xuwei06 已提交
48
    auto cpu_place = boost::get<platform::CPUPlace>(context.GetPlace());
C
chengduoZH 已提交
49

C
chengduoZH 已提交
50
    // computation
C
chengduoZH 已提交
51
    for (int k = 0; k < out_rows; ++k) {
C
chengduoZH 已提交
52 53 54
      T* dst_ptr = output->data<T>() + k * out_cols;
      int col_idx = 0;
      for (int j = 0; j < num; ++j) {
C
chengduoZH 已提交
55
        int col_len = input_cols[j];
C
chengduoZH 已提交
56 57 58 59 60 61
        const T* src_prt = input[j].data<T>() + k * col_len;
        memory::Copy(cpu_place, dst_ptr + col_idx, cpu_place, src_prt,
                     sizeof(T) * col_len);
        col_idx += col_len;
      }
    }
C
chengduoZH 已提交
62 63 64
  }
};

C
chengduoZH 已提交
65 66
/*
 * All tensors' dimension should be the same and the values of
67
 * each dimension must be the same, except the axis dimension.
C
chengduoZH 已提交
68
 */
C
chengduoZH 已提交
69 70 71 72 73
template <typename T>
class ConcatGradFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, const int axis,
74
                  std::vector<framework::Tensor>* outputs) {
C
chengduoZH 已提交
75
    // TODO(zcd): Add input data validity checking
76
    int num = outputs->size();
C
chengduoZH 已提交
77

C
chengduoZH 已提交
78
    int input_rows = 1;
79
    auto dim_0 = outputs->at(0).dims();
C
chengduoZH 已提交
80 81 82 83 84
    for (int i = 0; i < axis; ++i) {
      input_rows *= dim_0[i];
    }
    int input_cols = 0;

85
    std::vector<int64_t> output_cols(outputs->size());
C
chengduoZH 已提交
86
    for (int i = 0; i < num; ++i) {
87
      int t_cols = outputs->at(i).numel() / input_rows;
C
chengduoZH 已提交
88 89 90
      input_cols += t_cols;
      output_cols[i] = t_cols;
    }
X
xuwei06 已提交
91
    auto cpu_place = boost::get<platform::CPUPlace>(context.GetPlace());
C
chengduoZH 已提交
92 93 94 95 96 97 98

    // computation
    for (int k = 0; k < input_rows; ++k) {
      const T* src_ptr = input.data<T>() + k * input_cols;
      int col_idx = 0;
      for (int j = 0; j < num; ++j) {
        int col_len = output_cols[j];
99
        T* dst_ptr = outputs->at(j).data<T>() + k * col_len;
C
chengduoZH 已提交
100 101 102 103 104
        memory::Copy(cpu_place, dst_ptr, cpu_place, src_ptr + col_idx,
                     sizeof(T) * col_len);
        col_idx += col_len;
      }
    }
C
chengduoZH 已提交
105 106 107 108 109 110 111 112
  }
};

template class ConcatFunctor<platform::CPUDeviceContext, int>;
template class ConcatFunctor<platform::CPUDeviceContext, int64_t>;
template class ConcatFunctor<platform::CPUDeviceContext, float>;
template class ConcatFunctor<platform::CPUDeviceContext, double>;

C
chengduoZH 已提交
113 114 115 116 117
template class ConcatGradFunctor<platform::CPUDeviceContext, int>;
template class ConcatGradFunctor<platform::CPUDeviceContext, int64_t>;
template class ConcatGradFunctor<platform::CPUDeviceContext, float>;
template class ConcatGradFunctor<platform::CPUDeviceContext, double>;

C
chengduoZH 已提交
118 119 120
}  // namespace math
}  // namespace operators
}  // namespace paddle