test_layers.py 7.8 KB
Newer Older
Y
Yu Yang 已提交
1
from __future__ import print_function
Q
Qiao Longfei 已提交
2 3
import unittest

Q
Qiao Longfei 已提交
4 5
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets
Y
Yu Yang 已提交
6
from paddle.v2.fluid.framework import Program, program_guard
Q
Qiao Longfei 已提交
7
from paddle.v2.fluid.param_attr import ParamAttr
Y
Yu Yang 已提交
8 9 10 11


class TestBook(unittest.TestCase):
    def test_fit_a_line(self):
12
        program = Program()
Y
Yu Yang 已提交
13 14 15 16 17 18 19 20
        with program_guard(program, startup_program=Program()):
            x = layers.data(name='x', shape=[13], dtype='float32')
            y_predict = layers.fc(input=x, size=1, act=None)
            y = layers.data(name='y', shape=[1], dtype='float32')
            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)
            program.append_backward(avg_cost)
Y
Yu Yang 已提交
21

Y
Yu Yang 已提交
22
        print(str(program))
Y
Yu Yang 已提交
23 24

    def test_recognize_digits_mlp(self):
25
        program = Program()
Y
Yu Yang 已提交
26 27 28 29 30 31
        with program_guard(program, startup_program=Program()):
            # Change g_program, so the rest layers use `g_program`
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
32 33 34 35
            predict = layers.fc(input=[hidden2, hidden1],
                                size=10,
                                act='softmax',
                                param_attr=["sftmax.w1", "sftmax.w2"])
Y
Yu Yang 已提交
36 37 38 39 40
            cost = layers.cross_entropy(input=predict, label=label)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)

        print(str(program))
41 42

    def test_simple_conv2d(self):
F
fengjiayi 已提交
43
        program = Program()
Y
Yu Yang 已提交
44 45 46 47 48
        with program_guard(program, startup_program=Program()):
            images = layers.data(name='pixel', shape=[3, 48, 48], dtype='int32')
            layers.conv2d(input=images, num_filters=3, filter_size=[4, 4])

        print(str(program))
Y
Yu Yang 已提交
49

50 51
    def test_conv2d_transpose(self):
        program = Program()
Y
Yu Yang 已提交
52 53 54 55
        with program_guard(program):
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            layers.conv2d_transpose(input=img, num_filters=10, output_size=28)
        print(str(program))
56

F
fengjiayi 已提交
57
    def test_recognize_digits_conv(self):
F
fengjiayi 已提交
58
        program = Program()
Y
Yu Yang 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        with program_guard(program, startup_program=Program()):
            images = layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
            avg_cost = layers.mean(x=cost)

            program.append_backward(avg_cost)

        print(str(program))
85

Q
QI JUN 已提交
86 87
    def test_word_embedding(self):
        program = Program()
Y
Yu Yang 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        with program_guard(program, startup_program=Program()):
            dict_size = 10000
            embed_size = 32
            first_word = layers.data(name='firstw', shape=[1], dtype='int64')
            second_word = layers.data(name='secondw', shape=[1], dtype='int64')
            third_word = layers.data(name='thirdw', shape=[1], dtype='int64')
            forth_word = layers.data(name='forthw', shape=[1], dtype='int64')
            next_word = layers.data(name='nextw', shape=[1], dtype='int64')

            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)

        print(str(program))
Q
Qiao Longfei 已提交
132 133 134

    def test_linear_chain_crf(self):
        program = Program()
Y
Yu Yang 已提交
135
        with program_guard(program, startup_program=Program()):
Q
Qiao Longfei 已提交
136
            label_dict_len = 10
Y
Yu Yang 已提交
137 138 139
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden = layers.fc(input=images, size=128)
Q
Qiao Longfei 已提交
140 141 142 143
            crf = layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Q
Qiao Longfei 已提交
144 145 146 147 148
            layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
149
            self.assertNotEqual(crf, None)
Q
Qiao Longfei 已提交
150
            self.assertNotEqual(crf_decode, None)
Y
Yu Yang 已提交
151 152

        print(str(program))
Q
QI JUN 已提交
153

154 155 156 157 158 159 160 161 162 163
    def test_sigmoid_cross_entropy(self):
        program = Program()
        with program_guard(program):
            dat = layers.data(name='data', shape=[10], dtype='float32')
            lbl = layers.data(name='label', shape=[10], dtype='float32')
            self.assertIsNotNone(
                layers.sigmoid_cross_entropy_with_logits(
                    x=dat, label=lbl))
        print(str(program))

Y
yangyaming 已提交
164
    def test_sequence_expand(self):
Y
yangyaming 已提交
165 166 167 168 169
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=1)
Y
yangyaming 已提交
170
            self.assertIsNotNone(layers.sequence_expand(x=x, y=y))
Y
yangyaming 已提交
171 172
        print(str(program))

Q
qijun 已提交
173 174 175
    def test_get_places(self):
        program = Program()
        with program_guard(program):
Q
qijun 已提交
176
            x = layers.get_places(trainer_count=4)
Q
qijun 已提交
177 178
        print(str(program))

Y
yangyaming 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    def test_lstm_unit(self):
        program = Program()
        with program_guard(program):
            x_t_data = layers.data(
                name='x_t_data', shape=[10, 10], dtype='float32')
            x_t = layers.fc(input=x_t_data, size=10)
            prev_hidden_data = layers.data(
                name='prev_hidden_data', shape=[10, 20], dtype='float32')
            prev_hidden = layers.fc(input=prev_hidden_data, size=20)
            prev_cell_data = layers.data(
                name='prev_cell', shape=[10, 30], dtype='float32')
            prev_cell = layers.fc(input=prev_cell_data, size=30)
            self.assertIsNotNone(
                layers.lstm_unit(
                    x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell))
        print(str(program))

Y
Yu Yang 已提交
196 197 198

if __name__ == '__main__':
    unittest.main()