test_pool3d_op.py 10.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chengduoZH 已提交
15 16
import unittest
import numpy as np
17

18
import paddle.fluid.core as core
19
from .op_test import OpTest
C
chengduoZH 已提交
20 21


22 23 24 25 26 27
def max_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False):
C
chengduoZH 已提交
28
    N, C, D, H, W = x.shape
C
chengduoZH 已提交
29 30
    if global_pool == 1:
        ksize = [D, H, W]
31 32 33 34 35 36 37 38 39
    D_out = (D - ksize[0] + 2 * paddings[0] + strides[0] - 1
             ) / strides[0] + 1 if ceil_mode else (H - ksize[0] + 2 *
                                                   paddings[0]) / strides[0] + 1
    H_out = (H - ksize[1] + 2 * paddings[1] + strides[1] - 1
             ) / strides[1] + 1 if ceil_mode else (W - ksize[1] + 2 *
                                                   paddings[1]) / strides[1] + 1
    W_out = (W - ksize[2] + 2 * paddings[2] + strides[2] - 1
             ) / strides[2] + 1 if ceil_mode else (W - ksize[2] + 2 *
                                                   paddings[2]) / strides[2] + 1
C
chengduoZH 已提交
40
    out = np.zeros((N, C, D_out, H_out, W_out))
41
    for k in range(D_out):
C
chengduoZH 已提交
42 43
        d_start = np.max((k * strides[0] - paddings[0], 0))
        d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
44
        for i in range(H_out):
C
chengduoZH 已提交
45 46
            h_start = np.max((i * strides[0] - paddings[0], 0))
            h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
47
            for j in range(W_out):
C
chengduoZH 已提交
48 49 50 51 52 53 54 55
                w_start = np.max((j * strides[1] - paddings[1], 0))
                w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
                x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]

                out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
    return out


56 57 58 59 60 61
def avg_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False):
C
chengduoZH 已提交
62
    N, C, D, H, W = x.shape
C
chengduoZH 已提交
63 64
    if global_pool == 1:
        ksize = [D, H, W]
65 66 67 68 69 70 71 72 73
    D_out = (D - ksize[0] + 2 * paddings[0] + strides[0] - 1
             ) / strides[0] + 1 if ceil_mode else (H - ksize[0] + 2 *
                                                   paddings[0]) / strides[0] + 1
    H_out = (H - ksize[1] + 2 * paddings[1] + strides[1] - 1
             ) / strides[1] + 1 if ceil_mode else (W - ksize[1] + 2 *
                                                   paddings[1]) / strides[1] + 1
    W_out = (W - ksize[2] + 2 * paddings[2] + strides[2] - 1
             ) / strides[2] + 1 if ceil_mode else (W - ksize[2] + 2 *
                                                   paddings[2]) / strides[2] + 1
C
chengduoZH 已提交
74
    out = np.zeros((N, C, D_out, H_out, W_out))
75
    for k in range(D_out):
C
chengduoZH 已提交
76 77
        d_start = np.max((k * strides[0] - paddings[0], 0))
        d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
78
        for i in range(H_out):
C
chengduoZH 已提交
79 80
            h_start = np.max((i * strides[0] - paddings[0], 0))
            h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
81
            for j in range(W_out):
C
chengduoZH 已提交
82 83 84 85 86 87 88 89 90 91 92
                w_start = np.max((j * strides[1] - paddings[1], 0))
                w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
                x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]

                out[:, :, k, i, j] = np.sum(x_masked, axis=(2, 3, 4)) / (
                    (d_end - d_start) * (h_end - h_start) * (w_end - w_start))
    return out


class TestPool3d_Op(OpTest):
    def setUp(self):
K
Kexin Zhao 已提交
93
        self.op_type = "pool3d"
94
        self.use_cudnn = False
K
Kexin Zhao 已提交
95
        self.dtype = np.float32
C
fix bug  
chengduoZH 已提交
96
        self.init_test_case()
C
chengduoZH 已提交
97
        self.init_global_pool()
K
Kexin Zhao 已提交
98
        self.init_kernel_type()
C
chengduoZH 已提交
99
        self.init_pool_type()
100
        self.init_ceil_mode()
C
chengduoZH 已提交
101

C
fix bug  
chengduoZH 已提交
102 103
        if self.global_pool:
            self.paddings = [0 for _ in range(len(self.paddings))]
K
Kexin Zhao 已提交
104
        input = np.random.random(self.shape).astype(self.dtype)
C
chengduoZH 已提交
105
        output = self.pool3D_forward_naive(input, self.ksize, self.strides,
106
                                           self.paddings, self.global_pool,
K
Kexin Zhao 已提交
107 108
                                           self.ceil_mode).astype(self.dtype)
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
109 110 111 112 113

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
114 115
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
116
            'use_cudnn': self.use_cudnn,
117
            'ceil_mode': self.ceil_mode,
118
            'data_format': 'AnyLayout'  # TODO(dzhwinter) : should be fix latter
C
chengduoZH 已提交
119 120
        }

K
Kexin Zhao 已提交
121
        self.outputs = {'Out': output}
C
chengduoZH 已提交
122

123 124 125
    def testcudnn(self):
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
126
    def test_check_output(self):
127
        if self.testcudnn():
128 129 130 131
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
132 133

    def test_check_grad(self):
K
Kexin Zhao 已提交
134 135
        if self.dtype == np.float16:
            return
136
        if self.testcudnn() and self.pool_type != "max":
137 138 139 140
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=0.07)
        elif self.pool_type != "max":
141
            self.check_grad(set(['X']), 'Out', max_relative_error=0.07)
C
chengduoZH 已提交
142

C
fix bug  
chengduoZH 已提交
143
    def init_test_case(self):
C
chengduoZH 已提交
144 145 146 147 148
        self.shape = [2, 3, 5, 5, 5]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [0, 0, 0]

K
Kexin Zhao 已提交
149 150
    def init_kernel_type(self):
        pass
C
chengduoZH 已提交
151 152 153 154 155 156 157 158

    def init_pool_type(self):
        self.pool_type = "avg"
        self.pool3D_forward_naive = avg_pool3D_forward_naive

    def init_global_pool(self):
        self.global_pool = True

159 160 161
    def init_ceil_mode(self):
        self.ceil_mode = False

C
chengduoZH 已提交
162 163

class TestCase1(TestPool3d_Op):
C
fix bug  
chengduoZH 已提交
164
    def init_test_case(self):
C
chengduoZH 已提交
165 166 167
        self.shape = [2, 3, 7, 7, 7]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
C
chengduoZH 已提交
168
        self.paddings = [0, 0, 0]
C
chengduoZH 已提交
169

C
chengduoZH 已提交
170
    def init_pool_type(self):
C
chengduoZH 已提交
171 172
        self.pool_type = "avg"
        self.pool3D_forward_naive = avg_pool3D_forward_naive
C
chengduoZH 已提交
173 174 175 176 177 178 179

    def init_global_pool(self):
        self.global_pool = False


class TestCase2(TestPool3d_Op):
    def init_test_case(self):
C
chengduoZH 已提交
180 181 182 183 184
        self.shape = [2, 3, 7, 7, 7]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 1, 1]

C
chengduoZH 已提交
185 186 187 188 189 190 191
    def init_pool_type(self):
        self.pool_type = "avg"
        self.pool3D_forward_naive = avg_pool3D_forward_naive

    def init_global_pool(self):
        self.global_pool = False

C
chengduoZH 已提交
192 193

class TestCase3(TestPool3d_Op):
C
chengduoZH 已提交
194
    def init_pool_type(self):
C
chengduoZH 已提交
195 196 197 198
        self.pool_type = "max"
        self.pool3D_forward_naive = max_pool3D_forward_naive


C
chengduoZH 已提交
199 200
class TestCase4(TestCase1):
    def init_pool_type(self):
C
chengduoZH 已提交
201 202
        self.pool_type = "max"
        self.pool3D_forward_naive = max_pool3D_forward_naive
C
chengduoZH 已提交
203 204


C
chengduoZH 已提交
205 206
class TestCase5(TestCase2):
    def init_pool_type(self):
C
chengduoZH 已提交
207 208
        self.pool_type = "max"
        self.pool3D_forward_naive = max_pool3D_forward_naive
C
chengduoZH 已提交
209 210


211 212
#--------------------test pool3d--------------------
class TestCUDNNCase1(TestPool3d_Op):
K
Kexin Zhao 已提交
213
    def init_kernel_type(self):
214
        self.use_cudnn = True
K
Kexin Zhao 已提交
215 216 217 218 219 220 221 222 223 224 225 226


class TestFP16CUDNNCase1(TestPool3d_Op):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
227 228


229
class TestCUDNNCase2(TestCase1):
K
Kexin Zhao 已提交
230
    def init_kernel_type(self):
231
        self.use_cudnn = True
K
Kexin Zhao 已提交
232 233 234 235 236 237 238 239 240 241 242 243


class TestFP16CUDNNCase2(TestCase1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
244 245


246
class TestCUDNNCase3(TestCase2):
K
Kexin Zhao 已提交
247
    def init_kernel_type(self):
248
        self.use_cudnn = True
K
Kexin Zhao 已提交
249 250 251 252 253 254 255 256 257 258 259 260


class TestFP16CUDNNCase3(TestCase2):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
261 262


263
class TestCUDNNCase4(TestCase3):
K
Kexin Zhao 已提交
264
    def init_kernel_type(self):
265
        self.use_cudnn = True
K
Kexin Zhao 已提交
266 267 268 269 270 271 272 273 274 275 276 277


class TestFP16CUDNNCase4(TestCase3):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
278 279


280
class TestCUDNNCase5(TestCase4):
K
Kexin Zhao 已提交
281
    def init_kernel_type(self):
282
        self.use_cudnn = True
K
Kexin Zhao 已提交
283 284 285 286 287 288 289 290 291 292 293 294


class TestFP16CUDNNCase5(TestCase4):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
295 296


297
class TestCUDNNCase6(TestCase5):
K
Kexin Zhao 已提交
298
    def init_kernel_type(self):
299
        self.use_cudnn = True
K
Kexin Zhao 已提交
300 301 302 303 304 305 306 307 308 309 310 311


class TestFP16CUDNNCase6(TestCase5):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
312

C
chengduoZH 已提交
313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
class TestCeilModeCase1(TestCUDNNCase1):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase2(TestCUDNNCase2):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase3(TestCase1):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase4(TestCase2):
    def init_ceil_mode(self):
        self.ceil_mode = True


C
chengduoZH 已提交
334 335
if __name__ == '__main__':
    unittest.main()