quantization_pass.py 28.6 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
17
import six
W
WangZhen 已提交
18
from ..... import compat as cpt
W
WangZhen 已提交
19
from .... import core
20
from .... import Executor
21
from ....framework import IrGraph
22
from ....framework import IrNode
23
from ....framework import Program
W
WangZhen 已提交
24 25 26
from ....initializer import Constant
from .... import unique_name

27 28 29 30
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
    'TransformForMobilePass'
]
W
WangZhen 已提交
31

W
WangZhen 已提交
32

33
class QuantizationTransformPass(object):
W
WangZhen 已提交
34
    def __init__(self,
35
                 scope=None,
36
                 place=None,
W
WangZhen 已提交
37 38 39 40 41 42
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
                 window_size=10000):
        """
43
        Convert and rewrite the IrGraph according to weight and
W
WangZhen 已提交
44
        activation quantization type.
45

W
WangZhen 已提交
46
        Args:
47 48 49
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
            type, this pass will create some new parameters. The scope is used to
            initialize these new parameters.
50
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
51
            parameters described above.
W
WangZhen 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64
            weight_bits (int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits (int): quantization bit number for activation.
            activation_quantize_type (str): quantization type for activation,
                now support 'abs_max', 'range_abs_max'. If use 'abs_max' mode,
                the quantization scale will be calculated dynamically each step
                in both training and testing period. If use 'range_abs_max',
                a static quantization scale will be calculated during training
                and used in inference.
            weight_quantize_type (str): quantization type for weights,
                support 'abs_max'. The 'range_abs_max' usually is not used for
                weight, since weights are fixed once the model is well trained.
            window_size (int): the window size for 'range_abs_max' quantization.
65

W
WangZhen 已提交
66 67
        Examples:
        .. code-block:: python
68 69 70 71
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
72
            from paddle.fluid.contrib.slim.graph import IrGraph
73 74
            from paddle.fluid import core

75
            graph = IrGraph(core.Graph(program.desc), for_test=False)
76
            place = fluid.CPUPlace()
77
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
78
            place)
79
            transform_pass.apply(graph)
W
WangZhen 已提交
80
        """
81
        self._scope = scope
82
        self._place = place
83 84
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
W
WangZhen 已提交
85 86 87 88 89 90 91 92 93 94 95

        quant_type = ['abs_max', 'range_abs_max']
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be ",
                "'abs_max' or 'range_abs_max'.", str(activation_quantize_type))
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be ",
                "'abs_max' or 'range_abs_max'.", str(weight_quantize_type))

96 97 98
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
W
WangZhen 已提交
99

100 101 102 103
        self._need_initialized = collections.OrderedDict()
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
104
        ]
105 106
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
107

108
    def apply(self, graph):
109 110 111 112 113 114 115 116
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        """
W
WangZhen 已提交
117
        assert isinstance(graph,
118 119 120
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._need_initialized.clear()
        self._is_test = graph.is_test()
W
WangZhen 已提交
121 122
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
123
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
W
WangZhen 已提交
124 125 126 127 128 129

        def _transform_forward(graph, op):
            for var_node in op.inputs:
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
W
WangZhen 已提交
130
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
131 132
                    else self._activation_bits
                    quant_type = self._weight_quantize_type if var_node.name() \
W
WangZhen 已提交
133
                        in persistable_vars else self._activation_quantize_type
W
WangZhen 已提交
134 135 136 137 138
                    quant_var_node, scale_var_node = self._insert_quant_op(
                        graph, var_node, quant_bits, quant_type)
                    dequant_var_node = self._insert_dequant_op(
                        graph, quant_var_node, scale_var_node, quant_bits)
                    dequantized_vars[var_node.name()] = dequant_var_node
139
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
140 141 142 143 144 145

        def _transform_backward(graph, op):
            no_dequanted_input_vars = True
            for var_node in op.inputs:
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
146
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
147 148 149 150
                    no_dequanted_input_vars = False
            if no_dequanted_input_vars:
                raise ValueError("There is no dequanted inputs for op %s." %
                                 (op.name()))
W
WangZhen 已提交
151

152
        if not self._is_test:
W
WangZhen 已提交
153
            self._create_global_step(graph)
154
        ops = graph.all_op_nodes()
W
WangZhen 已提交
155 156
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
157
        for op in ops:
158
            if op.name() in self._quantizable_ops:
W
WangZhen 已提交
159
                _transform_forward(graph, op)
W
WangZhen 已提交
160 161
        # The loop for renaming the inputs of backward op.
        for op in ops:
162
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
163
                _transform_backward(graph, op)
W
WangZhen 已提交
164

165 166
        if len(self._need_initialized) > 0:
            assert self._scope is not None, \
167
            'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
168 169
            assert self._place is not None, \
            'The place cannot be set None when activation_quantize_type equals to range_abs_max.'
170
            init_program = Program()
171
            for var_desc, initializer in six.iteritems(self._need_initialized):
W
WangZhen 已提交
172 173 174 175 176 177 178
                var = init_program.global_block().create_var(
                    name=var_desc.name(),
                    shape=var_desc.shape(),
                    dtype=var_desc.dtype(),
                    type=var_desc.type(),
                    lod_level=var_desc.lod_level(),
                    persistable=var_desc.persistable())
179
                initializer(var, init_program.global_block())
180 181
            exe = Executor(self._place)
            exe.run(program=init_program, scope=self._scope)
182 183

        return graph
W
WangZhen 已提交
184

W
WangZhen 已提交
185
    def _create_global_step(self, graph):
186 187
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
188
            counter_name = cpt.to_text('@STEP_COUNTER@')
189
            for node in graph.all_var_nodes():
W
WangZhen 已提交
190
                if node.name() == counter_name:
191 192
                    self._global_step = node
            if self._global_step is None:
193
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
194 195 196 197
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
198
                self._need_initialized[global_step_in.var()] = \
W
WangZhen 已提交
199 200 201
                    Constant(value=0, force_cpu=True)
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
202
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
203 204
                increment_op = graph.create_op_node(
                    op_type='increment',
205 206 207 208 209
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
210 211
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
212 213 214
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
215

W
WangZhen 已提交
216 217 218 219 220 221 222
    def _insert_quant_op(self, graph, var_node, quant_bits, quant_type):
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
            return self._insert_quant_abs_max_op(graph, var_node, quant_bits)
        elif quant_type == 'range_abs_max':
W
WangZhen 已提交
223 224
            return self._insert_quant_range_abs_max_op(graph, var_node,
                                                       quant_bits)
W
WangZhen 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

    def _insert_quant_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
244 245 246 247
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
248 249 250
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
251 252 253
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267
        return quant_var_node, scale_var_node

    def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())

268
        scale_in_node = graph.create_persistable_node(
W
WangZhen 已提交
269 270 271 272
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.var().dtype())
273
        self._need_initialized[scale_in_node.var()] = Constant(value=0.001)
W
WangZhen 已提交
274 275 276 277 278

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

279
        if not self._is_test:
W
WangZhen 已提交
280
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
281
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
282 283
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
284
                shape=[self._window_size],
W
WangZhen 已提交
285
                var_dtype=var_node.var().dtype())
286 287
            self._need_initialized[scales_node.var()] = Constant(value=0)
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
288 289
            outputs['OutScales'] = scales_node
        attrs = {
290
            'window_size': self._window_size,
W
WangZhen 已提交
291
            'bit_length': quant_bits,
292 293
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
294 295 296 297 298 299 300
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

301 302 303 304
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
305

306 307 308
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

        return quant_var_node, scale_out_node

    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
326 327 328 329
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
330 331 332
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
333 334 335
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        return dequant_var_node

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
352
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
353 354
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
355 356 357


class QuantizationFreezePass(object):
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    """
    The freeze pass is used to adjust the quantize operator order, for example:
        1) `activation -> quant -> dequant -> conv2d` will be freezed into
        `activation -> quant -> conv2d -> dequant`
        2) `weight -> quant -> dequant -> conv2d` will be freezed into `weight -> conv2d`,
        and weight will be sacled offline.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
        weight_bits (int): quantization bit number for weights.
        activation_bits (int): quantization bit number for activation.
        weight_quantize_type (str): quantization type for weights, support 'abs_max'.
        The 'range_abs_max' usually is not used for weight, since weights are fixed once the
        model is well trained.
    """

W
WangZhen 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
                 weight_quantize_type='abs_max'):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
        self._fake_quant_op_names = [
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max'
        ]
        self._fake_dequant_op_names = ['fake_dequantize_max_abs']
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
        self._var_scale_map = collections.OrderedDict()

    def apply(self, graph):
400 401 402 403 404 405
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
        """
406 407
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
                input_arg_name = op_node.op().input('X')[0]
                if input_arg_name in persistable_vars:
                    if self._weight_quantize_type == 'abs_max':
                        param = self._load_var(input_arg_name)
                        scale_v = np.max(np.abs(param))
                    else:
                        scale_v = self._load_var(op_node.op().output('OutScale')
                                                 [0])[0]
                    self._var_scale_map[input_arg_name] = scale_v
                else:
                    scale_v = graph.var_node(op_node.op().output('OutScale')[0])
                    self._var_scale_map[input_arg_name] = scale_v
                if input_arg_name in persistable_vars:
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
                    # quantize weight and restore
                    param_v = self._load_var(input_arg_name)
                    quantized_param_v = self._quant(param_v, scale_v,
W
WangZhen 已提交
428
                                                    self._weight_bits)
W
WangZhen 已提交
429 430
                    self._restore_var(input_arg_name, quantized_param_v)

431
        ops = graph.all_op_nodes()
W
WangZhen 已提交
432 433 434 435 436
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

437
        ops = graph.all_op_nodes()
W
WangZhen 已提交
438 439 440 441 442 443 444 445 446 447 448
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
                self._insert_post_dequant_op(graph, op_node)

        for op_node in ops:
            # insert dequant_op after fc/conv, need to rename inputs of the followed ops
            for var_node in op_node.inputs:
                name = var_node.name()
                if name in self._op_output_rename_map:
                    old_in = graph.var_node(name)
W
WangZhen 已提交
449
                    new_in = self._op_output_rename_map[name]
W
WangZhen 已提交
450 451 452 453
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
454
        return graph
W
WangZhen 已提交
455 456 457 458 459 460 461 462

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
        k = op_node.op().output('Out')[0]
        v = op_node.op().input('X')[0]
        if v not in self._op_input_rename_map:
            self._op_input_rename_map[k] = v
        else:
            self._op_input_rename_map[k] = self._op_input_rename_map[v]
W
WangZhen 已提交
463
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
464 465 466 467

    def _insert_post_dequant_op(self, graph, op_node):
        max_range = None
        scale_var_node = None
468
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
W
WangZhen 已提交
469
        for var_node in op_node.inputs:
W
WangZhen 已提交
470 471 472 473
            name = var_node.name()
            if name in self._op_input_rename_map:
                old_in = graph.var_node(name)
                new_in = graph.var_node(self._op_input_rename_map[name])
W
WangZhen 已提交
474
                new_in.clear_outputs()
W
WangZhen 已提交
475 476
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
W
WangZhen 已提交
477
            scale_v = self._var_scale_map[original_var_name]
W
WangZhen 已提交
478 479 480 481 482 483 484 485
            if original_var_name in persistable_vars:
                param_range = (1 << (self._weight_bits - 1)) - 1
                act_range = (1 << (self._activation_bits - 1)) - 1
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
                max_range = param_range * act_range / scale_v
            else:
486
                assert isinstance(scale_v, IrNode)
W
WangZhen 已提交
487 488
                scale_var_node = self._var_scale_map[original_var_name]

W
WangZhen 已提交
489
        if len(op_node.outputs) != 1:
W
WangZhen 已提交
490 491 492
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

W
WangZhen 已提交
493
        output_var_node = op_node.outputs[0]
W
WangZhen 已提交
494 495 496 497 498 499 500
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.var().type(),
            shape=output_var_node.var().shape(),
            var_dtype=output_var_node.var().dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
501 502 503 504
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
505 506 507 508 509 510
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
511
        self._op_output_rename_map[output_var_node.name()] = dequant_var_node
W
WangZhen 已提交
512 513 514 515 516
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

517 518 519
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
520 521 522

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
523
        ops = graph.all_op_nodes()
W
WangZhen 已提交
524 525 526 527 528 529
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

530 531 532 533 534 535
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
559
    def _is_float(self, v):
W
WangZhen 已提交
560 561 562
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

W
WangZhen 已提交
563
    def _quant(self, x, scale, num_bits):
W
WangZhen 已提交
564
        return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
565 566 567


class ConvertToInt8Pass(object):
568 569 570 571 572 573 574 575 576
    """
    Convert the weights into int8_t type.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
        8bits weight tensors.
    """

577 578 579 580 581 582 583 584 585 586
    def __init__(self, scope, place):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']

    def apply(self, graph):
587 588 589 590 591 592 593
        """
        Convert weights' tpye of the graph. After that, the data type of the
        graph weigths is int8_t.

        Args:
            graph(IrGraph): the applied graph.
        """
594 595
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
        input_map = {}
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
616
        int8_var_node = graph.create_persistable_node(
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
            name=cpt.to_text(int8_var_node_name),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
635
        ops = graph.all_op_nodes()
636 637 638 639 640 641
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

642 643 644 645 646 647
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
648 649 650 651
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
652 653 654 655
    """
    This pass is used to convert the freezed graph for paddle-mobile execution.
    """

656 657 658 659 660 661 662
    def __init__(self):
        self._fake_quant_op_names = [
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max'
        ]
        self._fake_dequant_op_names = ['fake_dequantize_max_abs']

    def apply(self, graph):
663 664 665 666 667 668 669 670
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
        """
671
        ops = graph.all_op_nodes()
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
                op_node.op().set_type('quantize')
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
                op_node.op().set_type('dequantize')
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)

        return graph