multi_devices_graph_pass.cc 37.0 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduo 已提交
14
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
C
chengduoZH 已提交
15
#include <algorithm>
Y
Yancey1989 已提交
16
#include <fstream>
C
chengduoZH 已提交
17
#include <string>
C
chengduoZH 已提交
18
#include <utility>
C
chengduoZH 已提交
19
#include <vector>
20
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
21
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/details/computation_op_handle.h"
23
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
24
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
C
chengduoZH 已提交
25
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
better  
Xin Pan 已提交
28
#include "paddle/fluid/framework/ir/graph_helper.h"
X
Xin Pan 已提交
29
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
30
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
31
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
32

Y
Yu Yang 已提交
33 34 35
namespace paddle {
namespace framework {
namespace details {
X
Xin Pan 已提交
36

X
Xin Pan 已提交
37
namespace {
Y
Yancey1989 已提交
38 39 40 41 42
// TODO(panyx0718): Clean this up as well.
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
typedef std::vector<OpHandleBase *> GraphOps;
const char kGraphOps[] = "ops";
X
Xin Pan 已提交
43

C
chengduo 已提交
44 45 46 47 48 49
bool OpHaveRole(const ir::Node &node, const framework::OpRole &role) {
  return boost::get<int>(
             node.Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
         static_cast<int>(role);
}

X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
void PolishGraphToSupportDataHazards(ir::Graph *graph) {
  for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
    for (auto &name_pair : var_map) {
      if (name_pair.second.size() <= 1) {
        continue;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        OpHandleBase *write_op = (*it_new)->GeneratedOp();
        const auto &read_ops = (*it_old)->PendingOps();

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
          bool has_dep = false;
          for (auto *r_out : read_op->Outputs()) {
            for (auto *w_in : write_op->Inputs()) {
              if (r_out->Node() == w_in->Node()) {
                has_dep = true;
                break;
              }
            }
          }
          if (has_dep) continue;

          auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
          read_op->AddOutput(dep_var);
          write_op->AddInput(dep_var);
          graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
        }
      }
    }
  }
}

VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
                                      const platform::Place &place,
                                      size_t place_offset) {
  auto &var_holders = graph->Get<GraphVars>(kGraphVars)[place_offset];
  auto &var_holder = var_holders[node->Name()];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    if (node->Var()) {
      var = new VarHandle(graph->CreateVarNode(node->Var()), 0, place_offset,
                          node->Name(), place);
    } else {
      var = new VarHandle(
          graph->CreateEmptyNode(node->Name(), ir::Node::Type::kVariable), 0,
          place_offset, node->Name(), place);
    }
    var_holder.emplace_back(var);
  } else {
X
clean1  
Xin Pan 已提交
107
    var = *var_holder.rbegin();
X
Xin Pan 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  }
  return var;
}

void CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
                    ir::Node *new_node, const platform::Place &place,
                    size_t place_offset) {
  auto &vars =
      graph->Get<GraphVars>(kGraphVars)[place_offset][new_node->Name()];
  size_t version = vars.size();
  auto var =
      new VarHandle(new_node, version, place_offset, new_node->Name(), place);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
}

void AddOutputToLeafOps(ir::Graph *graph) {
  for (auto &op : graph->Get<GraphOps>(kGraphOps)) {
    if (!op->Outputs().empty()) {
      continue;
    }
    auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
    graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
    op->AddOutput(dummy_leaf);
  }
}
}  // namespace
Y
Yu Yang 已提交
135

C
chengduo 已提交
136 137
void MultiDevSSAGraphBuilderBase::CheckGraph(const ir::Graph &graph) const {}

138
void MultiDevSSAGraphBuilderBase::Init() const {
X
clean  
Xin Pan 已提交
139 140
  all_vars_.clear();

X
Xin Pan 已提交
141
  loss_var_name_ = Get<const std::string>(kLossVarName);
C
chengduo 已提交
142
  VLOG(10) << "Init MultiDevSSAGraphBuilder, loss name: " << loss_var_name_;
X
Xin Pan 已提交
143 144 145
  places_ = Get<const std::vector<platform::Place>>(kPlaces);
  local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
  strategy_ = Get<const BuildStrategy>(kStrategy);
P
peizhilin 已提交
146
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
147
  nccl_ctxs_ = &Get<platform::NCCLContextMap>(kNCCLCtxs);
Y
Yu Yang 已提交
148
#endif
C
chengduo 已提交
149
  PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size());
Y
Yu Yang 已提交
150 151
}

152
std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
X
Xin Pan 已提交
153
    std::unique_ptr<ir::Graph> graph) const {
X
Xin Pan 已提交
154
  Init();
C
chengduo 已提交
155
  CheckGraph(*graph);
156
  std::vector<ir::Node *> sorted_ops = SortOperations(*graph);
C
chengduo 已提交
157

X
Xin Pan 已提交
158 159
  auto nodes = graph->ReleaseNodes();
  ir::Graph &result = *graph;
160 161

  for (auto &node : nodes) {
X
Xin Pan 已提交
162
    if (node->IsVar() && node->Var()) {
X
Xin Pan 已提交
163
      all_vars_.emplace(node->Name(), node->Var());
164
    }
C
fix ci  
chengduoZH 已提交
165
  }
Y
Yu Yang 已提交
166 167

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
168 169 170
  result.Set(kGraphVars, new GraphVars(places_.size()));
  result.Set(kGraphDepVars, new GraphDepVars);
  result.Set(kGraphOps, new GraphOps);
171

Y
Yu Yang 已提交
172
  bool is_forwarding = true;
X
Xin Pan 已提交
173

X
better  
Xin Pan 已提交
174
  for (ir::Node *node : sorted_ops) {
175 176
    if (DealWithSpecialOp(&result, node)) {
      continue;
Y
Yu Yang 已提交
177
    } else {
178 179 180 181 182 183 184 185 186
      // This op runs on all devices
      if (IsScaleLossOp(node)) {
        // user can customize loss@grad if not use_default_grad_scale_
        InsertScaleLossGradOp(&result, node);
        // This assumes the backward generating code will ensure IsScaleLossOp
        // is true only for the op that scale the final scalar loss.
        // It also assumes backward op will always follow the forward op in
        // the block.
        is_forwarding = false;
C
chengduo 已提交
187
      } else {
188 189
        CreateComputationalOps(&result, node, places_.size());
      }
190

W
Wu Yi 已提交
191 192
      // Insert collective ops if nranks > 1
      if (!is_forwarding && Get<size_t>(kNRanks) > 1) {
193
        try {
C
chengduo 已提交
194 195 196 197 198
          bool is_bk_op =
              static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward));
          if (!is_bk_op) continue;
199

C
chengduo 已提交
200 201
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
202 203 204 205 206 207 208 209
          auto backward_vars =
              boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                  OpProtoAndCheckerMaker::OpRoleVarAttrName()));
          PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
          for (size_t i = 0; i < backward_vars.size(); i += 2) {
            auto &p_name = backward_vars[i];
            auto &g_name = backward_vars[i + 1];
            VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
W
Wu Yi 已提交
210 211 212
            if (NeedCollectiveForGrad(g_name, sorted_ops)) {
              InsertCollectiveOp(&result, p_name, g_name);
            }
Y
Yu Yang 已提交
213
          }
214
        } catch (boost::bad_get e) {
Y
Yu Yang 已提交
215 216 217 218
        }
      }
    }
  }
219

220 221
  InsertPostprocessOps(&result);

Y
Yu Yang 已提交
222
  /*
X
Xin Pan 已提交
223 224
  Dependency graph has been constructed. However, there are still data
  hazards need to be handled.
225
  */
Y
Yu Yang 已提交
226
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
227

Y
Yu Yang 已提交
228 229 230 231
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
C
chengduo 已提交
232

Y
Yancey1989 已提交
233
  result.Erase(kGraphOps);
Q
qiaolongfei 已提交
234
  return graph;
Y
Yu Yang 已提交
235 236
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
void MultiDevSSAGraphBuilderBase::InsertScaleLossGradOp(
    ir::Graph *result, const ir::Node *node) const {
  // user can customize loss@grad if not use_default_grad_scale_
  size_t loss_scale = 0;
  switch (this->strategy_.gradient_scale_) {
    case BuildStrategy::GradientScaleStrategy::kOne:
      loss_scale = 1;
      break;
    case BuildStrategy::GradientScaleStrategy::kCoeffNumDevice:
      loss_scale = Get<size_t>(kNRanks);
      break;
    case BuildStrategy::GradientScaleStrategy::kCustomized:
      loss_scale = 0;
      break;
    default:
      LOG(FATAL) << "Unknown gradient scale strategy.";
      break;
  }

  if (loss_scale) {
    // TODO(paddle-dev): Why is there no input for this op_handle?
    auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
    auto out_dtype = this->all_vars_.at(loss_grad_name)->GetDataType();
    this->CreateScaleLossGradOp(result, loss_grad_name, node->outputs[0],
                                loss_scale, out_dtype);
  }
}
C
chengduo 已提交
264

C
chengduo 已提交
265 266 267 268 269
bool MultiDevSSAGraphBuilderBase::DealWithSpecialOp(ir::Graph *result,
                                                    ir::Node *node) const {
  return false;
}

270 271 272 273
std::vector<ir::Node *> MultiDevSSAGraphBuilderBase::SortOperations(
    const ir::Graph &graph) const {
  return ir::TopologySortOperations(graph);
}
C
chengduo 已提交
274

275 276 277 278 279 280 281
bool MultiDevSSAGraphBuilderBase::UseGPU() const {
  bool use_gpu = false;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  use_gpu = nccl_ctxs_ != nullptr;
#endif
  return use_gpu;
}
C
chengduo 已提交
282

W
Wu Yi 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296
bool MultiDevSSAGraphBuilderBase::NeedCollectiveForGrad(
    const std::string &grad_name, std::vector<ir::Node *> ops) const {
  // if we have allreduce_op for current gradient variable in the graph,
  // then we don't need to add allreduce_op_handle for this gradient
  // NOTE: This is for the case that all gradients should add collective ops
  for (auto *node : ops) {
    if (node->Op()->Type() != "allreduce") continue;
    for (auto in_name : node->Op()->InputArgumentNames()) {
      if (in_name == grad_name) {
        return false;
      }
    }
  }
  return true;
C
chengduo 已提交
297 298
}

299 300 301
void MultiDevSSAGraphBuilderBase::CreateOpHandleIOs(ir::Graph *result,
                                                    ir::Node *node,
                                                    size_t place_id) const {
C
chengduo 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
  auto p = places_[place_id];
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));

  for (ir::Node *input : node->inputs) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, input, p, place_id);
    op_handle->AddInput(var);
  }

  for (ir::Node *output : node->outputs) {
    ir::Node *new_node = nullptr;
    if (output->Var()) {
      new_node = result->CreateVarNode(output->Var());
    } else {
      new_node =
          result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
    }
    CreateOpOutput(result, op_handle, new_node, p, place_id);
  }
}

324
void MultiDevSSAGraphBuilderBase::SetCommunicationContext(
325
    OpHandleBase *op_handle, const platform::Place &p) const {
P
peizhilin 已提交
326
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
327 328 329 330 331 332 333 334 335 336
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

337 338 339
void MultiDevSSAGraphBuilderBase::CreateBroadcastOp(ir::Graph *result,
                                                    const std::string &p_name,
                                                    size_t src_dev_id) const {
P
peizhilin 已提交
340
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
polish  
Xin Pan 已提交
341 342 343
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
344
#else
X
polish  
Xin Pan 已提交
345 346 347
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
C
chengduoZH 已提交
348
#endif
X
Xin Pan 已提交
349
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
X
Xin Pan 已提交
350

X
Xin Pan 已提交
351
  auto *in =
X
clean1  
Xin Pan 已提交
352
      result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back();
C
chengduoZH 已提交
353 354 355 356
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
357
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
358
    auto &vars = result->Get<GraphVars>(kGraphVars).at(i).at(p_name);
X
polish  
Xin Pan 已提交
359 360 361
    auto *out_var = new VarHandle(
        result->CreateEmptyNode(p_name, ir::Node::Type::kVariable), vars.size(),
        i, p_name, p);
C
chengduoZH 已提交
362 363 364 365 366
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

367
void MultiDevSSAGraphBuilderBase::CreateFusedBroadcastOp(
368 369
    ir::Graph *result,
    const std::vector<std::unordered_set<std::string>> &bcast_varnames) const {
P
peizhilin 已提交
370
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
#endif
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
  }

  for (size_t dev_id = 0; dev_id < bcast_varnames.size(); ++dev_id) {
    for (auto &p_name : bcast_varnames[dev_id]) {
      auto *in =
X
clean1  
Xin Pan 已提交
389
          result->Get<GraphVars>(kGraphVars).at(dev_id).at(p_name).back();
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
      op_handle->AddInput(in);
      for (size_t out_dev_id = 0; out_dev_id < places_.size(); ++out_dev_id) {
        auto &p = places_[out_dev_id];
        auto &vars =
            result->Get<GraphVars>(kGraphVars).at(out_dev_id).at(p_name);
        auto *out_var = new VarHandle(
            result->CreateEmptyNode(p_name, ir::Node::Type::kVariable),
            vars.size(), out_dev_id, p_name, p);
        vars.emplace_back(out_var);
        op_handle->AddOutput(out_var);
      }
    }
  }
}

405 406 407
void MultiDevSSAGraphBuilderBase::CreateComputationalOp(ir::Graph *result,
                                                        ir::Node *node,
                                                        int dev_id) const {
X
Xin Pan 已提交
408
  result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
409
      new ComputationOpHandle(result->CreateOpNode(node->Op()),
S
sneaxiy 已提交
410
                              local_scopes_[dev_id], places_[dev_id], dev_id));
411
  CreateOpHandleIOs(result, node, dev_id);
C
chengduoZH 已提交
412 413
}

414
void MultiDevSSAGraphBuilderBase::CreateAllReduceOp(
Y
Yancey1989 已提交
415
    ir::Graph *result, const std::string &og) const {
Y
Yancey1989 已提交
416 417 418
  OpHandleBase *op_handle = nullptr;

  auto append_allreduce_op = [&](
Y
Yancey1989 已提交
419 420
      const std::vector<Scope *> &scopes,
      const std::vector<platform::Place> &places) -> OpHandleBase * {
P
peizhilin 已提交
421
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
422 423 424
    result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
        result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
        scopes, places, nccl_ctxs_));
C
chengduoZH 已提交
425
#else
Y
Yancey1989 已提交
426 427 428
    result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
        result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
        scopes, places));
C
chengduoZH 已提交
429
#endif
Y
Yancey1989 已提交
430 431 432 433 434
    return result->Get<GraphOps>(kGraphOps).back();
  };

  if (!strategy_.enable_parallel_graph_)
    op_handle = append_allreduce_op(local_scopes_, places_);
Y
Yu Yang 已提交
435 436

  for (size_t i = 0; i < places_.size(); ++i) {
Y
Yancey1989 已提交
437 438 439
    if (strategy_.enable_parallel_graph_) {
      op_handle = append_allreduce_op({local_scopes_[i]}, {places_[i]});
    }
Y
Yancey1989 已提交
440

Y
Yancey1989 已提交
441
    SetCommunicationContext(op_handle, places_[i]);
X
Xin Pan 已提交
442
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
Y
Yu Yang 已提交
443 444
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
445
    op_handle->AddInput(prev_grad);
Y
Yu Yang 已提交
446

X
Xin Pan 已提交
447
    auto var =
X
polish  
Xin Pan 已提交
448
        new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
Y
Yancey1989 已提交
449
                      vars.size(), i, og, places_[i]);
Y
Yu Yang 已提交
450 451 452 453 454
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

455
void MultiDevSSAGraphBuilderBase::CreateScaleLossGradOp(
456
    ir::Graph *result, const std::string &loss_grad_name,
457 458
    ir::Node *out_var_node, size_t loss_scale,
    proto::VarType::Type dtype) const {
Y
Yu Yang 已提交
459
  for (size_t i = 0; i < places_.size(); ++i) {
Y
yuyang18 已提交
460
    auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
X
Xin Pan 已提交
461
    auto *op_handle = new ScaleLossGradOpHandle(
X
polish  
Xin Pan 已提交
462
        result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
463
        loss_scale, local_scopes_[i], places_[i], dev_ctx, dtype);
X
Xin Pan 已提交
464
    result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
Y
Yu Yang 已提交
465 466 467 468 469 470 471

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

472 473
    CreateOpOutput(result, op_handle,
                   result->CreateVarNode(out_var_node->Var()), places_[i], i);
Y
Yu Yang 已提交
474 475 476
  }
}

477 478
void MultiDevSSAGraphBuilderBase::CreateComputationalOps(
    ir::Graph *result, ir::Node *node, size_t num_places) const {
T
typhoonzero 已提交
479
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
480 481
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
S
sneaxiy 已提交
482 483
    result->Get<GraphOps>(kGraphOps).emplace_back(new ComputationOpHandle(
        result->CreateOpNode(node->Op()), s, p, scope_idx));
484
    CreateOpHandleIOs(result, node, scope_idx);
Y
Yu Yang 已提交
485 486 487
  }
}

488 489 490
VarHandle *MultiDevSSAGraphBuilderBase::CreateReduceOp(ir::Graph *result,
                                                       const std::string &og,
                                                       int dst_dev_id) const {
P
peizhilin 已提交
491
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
492
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
493 494
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
495
#else
X
Xin Pan 已提交
496
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
497 498
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
499
#endif
X
clean1  
Xin Pan 已提交
500
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
C
chengduoZH 已提交
501 502 503

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
504
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
505
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
C
chengduoZH 已提交
506 507
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
508
    op_handle->AddInput(prev_grad);
C
chengduoZH 已提交
509
  }
X
Xin Pan 已提交
510
  auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og];
X
polish  
Xin Pan 已提交
511 512 513
  auto var =
      new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                    vars.size(), dst_dev_id, og, places_[dst_dev_id]);
C
chengduoZH 已提交
514 515 516 517 518
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

519
bool MultiDevSSAGraphBuilderBase::IsScaleLossOp(ir::Node *node) const {
C
chengduo 已提交
520 521
  return !loss_var_name_.empty() && node->Op() &&
         boost::get<int>(
522 523
             node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
             (static_cast<int>(OpRole::kBackward) |
C
chengduo 已提交
524
              static_cast<int>(OpRole::kLoss));
525 526 527 528 529
}

bool MultiDevSSAGraphBuilderBase::IsSparseGradient(
    const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
C
chengduo 已提交
530
  return all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS;
531 532 533
}

void AllReduceSSAGraphBuilder::InsertCollectiveOp(
Y
Yancey1989 已提交
534
    ir::Graph *result, const std::string &p_name,
535 536 537 538 539
    const std::string &g_name) const {
  if (IsSparseGradient(g_name)) {
    CreateReduceOp(result, g_name, 0);
    CreateBroadcastOp(result, g_name, 0);
  } else {
Y
Yancey1989 已提交
540
    CreateAllReduceOp(result, g_name);
541
  }
542
}
543

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
int BalanceVarSSAGraphBuilder::GetVarDeviceID(
    const std::string &varname) const {
  auto got = sharded_var_device_.find(varname);
  if (got == sharded_var_device_.end()) {
    auto pos = varname.find(framework::kNewGradSuffix);
    if (pos != std::string::npos) {
      got = sharded_var_device_.find(varname.substr(0, pos));
    }
  }
  return got == sharded_var_device_.end() ? -1 : got->second;
}

int BalanceVarSSAGraphBuilder::GetOpDeviceID(ir::Node *node) const {
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
    return -1;
  }
  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
    return -1;
  }
  auto param_grad = boost::get<std::vector<std::string>>(
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1]);
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
                    node->Op()->Type(), param_grad[0], param_grad[1]);
  return dev_id;
}

size_t BalanceVarSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
    if (all_vars_.find(var_name) == all_vars_.end()) continue;
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

void BalanceVarSSAGraphBuilder::ResetState() const {
  balance_vars_.clear();
  sharded_var_device_.clear();

  balance_vars_.resize(places_.size(), 0);
}

void ReduceSSAGraphBuilder::Init() const {
  MultiDevSSAGraphBuilderBase::Init();
  ResetState();
}

void ReduceSSAGraphBuilder::ResetState() const {
  BalanceVarSSAGraphBuilder::ResetState();
  bcast_var_name_set_.clear();
  bcast_var_name_set_.resize(places_.size());
}

void ReduceSSAGraphBuilder::InsertCollectiveOp(
Y
Yancey1989 已提交
613
    ir::Graph *result, const std::string &p_name,
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    const std::string &g_name) const {
  size_t cur_device_id = GetAppropriateDeviceID({g_name});
  CreateReduceOp(result, g_name, cur_device_id);
  sharded_var_device_.emplace(g_name, cur_device_id);
  bcast_var_name_set_[cur_device_id].emplace(p_name);
}

bool ReduceSSAGraphBuilder::DealWithSpecialOp(ir::Graph *result,
                                              ir::Node *node) const {
  int op_dev_id = BalanceVarSSAGraphBuilder::GetOpDeviceID(node);
  if (op_dev_id != -1) {
    // This op only runs on one specific device.
    CreateComputationalOp(result, node, op_dev_id);
    for (ir::Node *n : node->outputs) {
      sharded_var_device_.emplace(n->Name(), op_dev_id);
    }
    return true;
  }
  return false;
}

void ReduceSSAGraphBuilder::InsertPostprocessOps(ir::Graph *result) const {
  if (UseGPU()) {
    if (strategy_.fuse_broadcast_op_) {
      CreateFusedBroadcastOp(result, bcast_var_name_set_);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set_.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set_[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(result, bcast_name, dev_id);
        }
Y
Yancey1989 已提交
645 646
      }
    }
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
  }
}

int ReduceSSAGraphBuilder::GetOpDeviceID(
    ir::Node *node,
    std::unordered_map<std::string, std::vector<ir::Node *>> *delay_ops) const {
  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
    return -1;
  }

  auto param_grad = boost::get<std::vector<std::string>>(
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1]);

  if (dev_id == -1) {
    (*delay_ops)[param_grad[1]].push_back(node);
    return -2;
  }
  return dev_id;
}

std::vector<ir::Node *> ReduceSSAGraphBuilder::SortOperations(
    const ir::Graph &graph) const {
  std::vector<ir::Node *> sorted_ops = ir::TopologySortOperations(graph);
  return SortForReduceMode(sorted_ops);
}

std::vector<ir::Node *> ReduceSSAGraphBuilder::SortForReduceMode(
    const std::vector<ir::Node *> &topo_ops) const {
  std::vector<ir::Node *> sorted_ops;
  std::unordered_map<std::string, std::vector<ir::Node *>> delayed_op;
  sorted_ops.reserve(topo_ops.size());
  ResetState();

  auto insert_delayed_op = [&](const std::string &var_name, int dev_id) {
    sharded_var_device_.emplace(var_name, dev_id);
    if (delayed_op.count(var_name)) {
      auto &ops = delayed_op.at(var_name);
      sorted_ops.insert(sorted_ops.end(), ops.begin(), ops.end());
      delayed_op.at(var_name).clear();
Y
Yancey1989 已提交
689
    }
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
  };

  for (ir::Node *node : topo_ops) {
    int op_dev_id = GetOpDeviceID(node, &delayed_op);
    if (op_dev_id > -1) {
      // This op only runs on one specific device.
      sorted_ops.emplace_back(node);
      for (ir::Node *n : node->outputs) {
        insert_delayed_op(n->Name(), op_dev_id);
      }
    } else if (op_dev_id == -1) {
      // This op runs on all devices, and its output may have parameter's
      // gradients.
      sorted_ops.emplace_back(node);
      bool is_bk_op =
          static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                OpProtoAndCheckerMaker::OpRoleAttrName())) &
                            static_cast<int>(OpRole::kBackward));
      if (!is_bk_op) continue;
      // Currently, we assume that once gradient is generated, it can be
      // broadcast, and each gradient is only broadcast once.
      std::vector<std::string> backward_vars;
      try {
        backward_vars =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      } catch (boost::bad_get e) {
      }
      PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

      for (size_t i = 0; i < backward_vars.size(); i += 2) {
        auto &g_name = backward_vars[i + 1];
        size_t cur_device_id = GetAppropriateDeviceID({g_name});
        insert_delayed_op(g_name, static_cast<int>(cur_device_id));
      }
    } else if (op_dev_id == -2) {
      // The Op on which the Op depends has not yet been generated.
Y
yi.wu 已提交
727
    }
Y
Yancey1989 已提交
728 729
  }

730
  PADDLE_ENFORCE_EQ(sorted_ops.size(), topo_ops.size());
Y
Yancey1989 已提交
731

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
  ResetState();
  return sorted_ops;
}

void DistSSAGraphBuilder::Init() const {
  MultiDevSSAGraphBuilderBase::Init();
  ResetState();
}

void DistSSAGraphBuilder::ResetState() const {
  BalanceVarSSAGraphBuilder::ResetState();
  bcast_var_name_set_.clear();
  bcast_var_name_set_.resize(places_.size());
}

bool DistSSAGraphBuilder::DealWithSpecialOp(ir::Graph *result,
                                            ir::Node *node) const {
  bool insert_op = false;
  if (OpHaveRole(*node, OpRole::kRPC)) {
    int op_dev_id = CreateRPCOp(result, node);
    PADDLE_ENFORCE(op_dev_id != -1,
                   "Can not schedule the RPC operator to the right place.");
    if (node->Op()->Type() == "recv") {
      auto recv_vars_attr =
          boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
              OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE(recv_vars_attr.size() == 2UL);  // [parameter, gradient]
      if (recv_vars_attr[0].find(".block") == std::string::npos) {
        bcast_var_name_set_[op_dev_id].emplace(recv_vars_attr[0]);
      }
    }
    insert_op = true;
    need_broadcast_var_ = true;
  } else if (OpHaveRole(*node, OpRole::kDist)) {
    int op_dev_id = CreateDistTrainOp(result, node);
    if (node->Op()->Type() == "concat") {
      auto origin_param_name = node->Op()->OutputArgumentNames()[0];
      bcast_var_name_set_[op_dev_id].emplace(origin_param_name);
    }
    insert_op = true;
  } else {
    int op_dev_id = GetOpDeviceID(node);
    if (op_dev_id != -1) {  // This op only runs on one specific device.
      CreateComputationalOp(result, node, op_dev_id);
      for (ir::Node *n : node->outputs) {
        sharded_var_device_.emplace(n->Name(), op_dev_id);
      }
      insert_op = true;
    }
  }
  return insert_op;
W
Wu Yi 已提交
783 784 785
}

void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
X
clean1  
Xin Pan 已提交
786
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
787 788 789 790 791 792
  for (ir::Node *input : node->inputs) {
    VarHandle *var = nullptr;
    for (int place_offset = 0; place_offset < num_places; ++place_offset) {
      auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
      auto &var_holder = var_holders[input->Name()];
      if (!var_holder.empty()) {
X
clean1  
Xin Pan 已提交
793
        var = *var_holder.rbegin();
W
Wu Yi 已提交
794 795 796
        op_handle->AddInput(var);
      }
    }
Y
Yancey1989 已提交
797 798 799
  }
}

800
// Create RPC related op handles that connects its in ops and out ops.
801
int DistSSAGraphBuilder::CreateRPCOp(ir::Graph *result, ir::Node *node) const {
Y
Yancey1989 已提交
802
  int op_dev_id = -1;
803
  if (node->Op()->Type() == "send") {
X
Xin Pan 已提交
804
    // TODO(paddle-dev): getting the first var is not safe.
805
    op_dev_id = GetVarDeviceID(node->inputs[0]->Name());
X
Xin Pan 已提交
806 807
    PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
                   "This hack no longer holds, please fix.");
Y
Yancey1989 已提交
808 809 810
    // the variable name which contains .block means it was splited by
    // split_byref op
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
X
Xin Pan 已提交
811
        node->inputs[0]->Name().find(".block") == std::string::npos) {
812 813
      std::vector<std::string> input_var_names;
      for (ir::Node *n : node->inputs) {
X
Xin Pan 已提交
814
        input_var_names.push_back(n->Name());
815
      }
W
Wu Yi 已提交
816 817 818 819
      auto send_param_grad = boost::get<std::vector<std::string>>(
          node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE_EQ(send_param_grad.size(), 2U);
      op_dev_id = GetAppropriateDeviceID({send_param_grad[1]});
M
minqiyang 已提交
820 821
      VLOG(10) << "send grad " << input_var_names[0] << " origin "
               << send_param_grad[1] << " place: " << op_dev_id;
822
      for (auto &varname : input_var_names) {
823
        sharded_var_device_.emplace(varname, op_dev_id);
Y
Yancey1989 已提交
824
      }
825
      sharded_var_device_.emplace(send_param_grad[1], op_dev_id);
Y
Yancey1989 已提交
826
    }
827 828 829
  } else if (node->Op()->Type() == "recv") {
    std::vector<std::string> output_var_names;
    for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
830
      output_var_names.push_back(n->Name());
831
    }
W
Wu Yi 已提交
832 833 834
    auto recv_param_grad = boost::get<std::vector<std::string>>(
        node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
    if (recv_param_grad.size() == 2U) {
835
      op_dev_id = GetVarDeviceID(recv_param_grad[1]);
M
minqiyang 已提交
836 837 838
      VLOG(10) << "recv param " << recv_param_grad[0]
               << " get grad place: " << recv_param_grad[1]
               << " place: " << op_dev_id;
W
Wu Yi 已提交
839 840 841
    } else {
      op_dev_id = GetAppropriateDeviceID(output_var_names);
    }
842
    for (auto &varname : output_var_names) {
843
      sharded_var_device_.emplace(varname, op_dev_id);
Y
Yancey1989 已提交
844 845
    }
  } else {
W
Wu Yi 已提交
846
    // send_barrier, fetch_barrier will run on place 0;
Y
Yancey1989 已提交
847 848 849 850
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
851
                 node->Op()->Type());
X
Xin Pan 已提交
852
  result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
853 854
      result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
      node->Op()->Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
855

W
Wu Yi 已提交
856 857
  if (node->Op()->Type() == "send") {
    CreateOpHandleIOs(result, node, op_dev_id);
Y
Yancey1989 已提交
858
  } else {
W
Wu Yi 已提交
859 860 861
    // send_barrier, recv, fetch_barrier's inputs are deps var, get them from
    // all places
    auto p = places_[op_dev_id];
X
clean1  
Xin Pan 已提交
862
    auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
863 864
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
Y
Yancey1989 已提交
865

W
Wu Yi 已提交
866 867 868 869
    SetOpInputsAllPlaces(result, node, places_.size());
    for (ir::Node *output : node->outputs) {
      int outvar_dev_id = op_dev_id;
      if (node->Op()->Type() == "fetch_barrier") {
870
        outvar_dev_id = GetVarDeviceID(output->Name());
Q
Qiao Longfei 已提交
871
        PADDLE_ENFORCE_NE(outvar_dev_id, -1, "output name %s", output->Name());
W
Wu Yi 已提交
872 873 874 875 876 877 878 879 880 881 882 883
      }
      p = places_[outvar_dev_id];
      ir::Node *new_node = nullptr;
      if (output->Var()) {
        new_node = result->CreateVarNode(output->Var());
      } else {
        new_node =
            result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
      }
      CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
    }
  }
Y
Yancey1989 已提交
884
  return op_dev_id;
Y
Yu Yang 已提交
885 886
}

887 888 889 890 891 892 893
int DistSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
                                           ir::Node *node) const {
  int op_dev_id = -1;
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
    input_var_names.push_back(input->Name());
C
chengduo 已提交
894
  }
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
  for (ir::Node *output : node->outputs) {
    output_var_names.push_back(output->Name());
  }

  if (node->Op()->Type() == "split_byref" ||
      node->Op()->Type() == "split_selected_rows" ||
      node->Op()->Type() == "split_ids") {
    // TODO(paddle-dev): getting the first var is not safe.
    op_dev_id = GetVarDeviceID(input_var_names[0]);
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
        sharded_var_device_.emplace(varname, op_dev_id);
      }
    }
    for (auto &varname : output_var_names) {
      sharded_var_device_.emplace(varname, op_dev_id);
    }
  } else if (node->Op()->Type() == "concat") {
    op_dev_id = GetVarDeviceID(input_var_names[0]);
    for (auto &varname : output_var_names) {
      sharded_var_device_.emplace(varname, op_dev_id);
    }
  } else {
    LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type();
    PADDLE_THROW(
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
                 "can not find right place for distributed op: %s",
                 node->Op()->Type());

  CreateComputationalOp(result, node, op_dev_id);
  return op_dev_id;
C
chengduo 已提交
931 932
}

Y
Yancey1989 已提交
933
void DistSSAGraphBuilder::InsertCollectiveOp(ir::Graph *result,
934 935 936 937 938 939 940 941 942 943 944 945 946 947
                                             const std::string &p_name,
                                             const std::string &g_name) const {
  size_t cur_device_id = 0;
  switch (strategy_.reduce_) {
    case BuildStrategy::ReduceStrategy::kReduce:
      cur_device_id = GetAppropriateDeviceID({g_name});
      CreateReduceOp(result, g_name, cur_device_id);
      sharded_var_device_.emplace(g_name, cur_device_id);
      break;
    case BuildStrategy::ReduceStrategy::kAllReduce:
      if (IsSparseGradient(g_name)) {
        CreateReduceOp(result, g_name, 0);
        CreateBroadcastOp(result, g_name, 0);
      } else {
Y
Yancey1989 已提交
948
        CreateAllReduceOp(result, g_name);
949 950 951 952 953 954 955 956 957
      }
      break;
    default:
      LOG(FATAL) << "Unknown reduce strategy.";
      break;
  }
}

void DistSSAGraphBuilder::InsertPostprocessOps(ir::Graph *result) const {
958 959
  // broad cast received parameters when training in parameter server mode.
  if (need_broadcast_var_) {
Q
Qiao Longfei 已提交
960 961 962 963 964 965 966 967
    // There are 4 conditions:
    // 1. GPU && Reduce: Reduce gradient then broadcast gradient to other GPUS.
    // Need to broadcast received parameters to other GPU.
    // 2. GPU && AllReduce: AllReduce all graident to each GPU. Need to
    // broadcast received parameters to other GPU.
    // 3. CPU && AllReduce: AllReduce all gradient to each thread. Need to
    // broadcast received parameters to other scope.
    // 4. CPU && Reduce: because all parameters share the same memory, did not
Q
Qiao Longfei 已提交
968
    // broadcast received parameters.
969
    if (!UseGPU() &&
Q
Qiao Longfei 已提交
970
        strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
971 972
      return;
    }
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
    if (strategy_.fuse_broadcast_op_) {
      CreateFusedBroadcastOp(result, bcast_var_name_set_);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set_.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set_[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(result, bcast_name, dev_id);
        }
      }
    }
  }
}

std::unordered_set<std::string> &MultiDevSSAGraphBuilder() {
  static std::unordered_set<std::string> regs;
  return regs;
Y
Yu Yang 已提交
989
}
990 991 992 993 994 995

static int MultiDevSSAGraphBuilderRegister(const std::string &builder_mode) {
  MultiDevSSAGraphBuilder().insert(builder_mode);
  return 0;
}

Y
Yu Yang 已提交
996 997 998
}  // namespace details
}  // namespace framework
}  // namespace paddle
X
Xin Pan 已提交
999

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
#define REGISTER_MULTI_DEVICES_PASS(pass_name, pass_class)                     \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                              \
      _reg_ssa_graph_builder_##pass_name,                                      \
      "REGISTER_MULTI_DEVICES_PASS must be called in global namespace.");      \
  int _reg_ssa_graph_builder_entry_##pass_name =                               \
      paddle::framework::details::MultiDevSSAGraphBuilderRegister(#pass_name); \
  REGISTER_PASS(pass_name, pass_class)                                         \
      .RequirePassAttr(paddle::framework::details::kLossVarName)               \
      .RequirePassAttr(paddle::framework::details::kPlaces)                    \
      .RequirePassAttr(paddle::framework::details::kLocalScopes)               \
      .RequirePassAttr(paddle::framework::details::kStrategy)                  \
Y
Yancey1989 已提交
1011
      .RequirePassAttr(paddle::framework::details::kNRanks)
1012 1013 1014 1015

REGISTER_MULTI_DEVICES_PASS(reduce_mode_multi_devices_pass,
                            paddle::framework::details::ReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS(
C
chengduo 已提交
1016
    all_reduce_mode_multi_devices_pass,
1017 1018 1019
    paddle::framework::details::AllReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS(dist_multi_devices_pass,
                            paddle::framework::details::DistSSAGraphBuilder);