pybind.cc 59.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

24
#include "paddle/fluid/framework/details/alloc_continuous_space_for_grad_pass.h"
Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
28
#include "paddle/fluid/framework/garbage_collector.h"
29
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
30 31 32
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/framework/op_info.h"
34
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
35
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
37
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
40
#include "paddle/fluid/framework/version.h"
41
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
42
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
44
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
45
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
48
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
49
#include "paddle/fluid/platform/enforce.h"
50
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
51 52
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
53
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
54
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
55
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
57
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
58
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
59
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
60
#include "paddle/fluid/pybind/ir.h"
61 62
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
63
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
64
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
65
#include "paddle/fluid/pybind/tensor_py.h"
66
#include "paddle/fluid/string/to_string.h"
67

D
Dong Zhihong 已提交
68
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
69
#ifndef _WIN32
Y
Yi Wang 已提交
70
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
71
#endif
Y
Yi Wang 已提交
72 73
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
74 75
#endif

M
minqiyang 已提交
76 77
#include "pybind11/stl.h"

78 79 80 81
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
82 83 84
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

85
namespace paddle {
86
namespace pybind {
87
bool IsCompiledWithCUDA() {
88
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
89 90 91 92 93 94
  return false;
#else
  return true;
#endif
}

95 96 97 98 99 100 101 102
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

103 104 105 106 107 108 109 110
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

111
bool IsCompiledWithBrpc() {
112
#ifndef PADDLE_WITH_DISTRIBUTE
113 114
  return false;
#endif
115 116 117 118 119 120

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
121 122
}

Y
update  
Yancey1989 已提交
123
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
124
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
125 126 127 128 129 130
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
131 132 133 134 135 136 137 138 139 140
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

141
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
142 143 144
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
145
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
146

147
  m.doc() = "C++ core of PaddlePaddle";
148

149 150 151 152
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

153
  BindException(&m);
Y
Yu Yang 已提交
154

S
sneaxiy 已提交
155
  m.def(
S
sneaxiy 已提交
156
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
157 158 159 160
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
161 162 163
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
164 165 166
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
167
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
168

169 170 171 172 173
  m.def("_set_fuse_parameter_group_size",
        &paddle::framework::details::SetFuseParameterGroupsSize);
  m.def("_set_fuse_parameter_memory_size",
        &paddle::framework::details::SetFuseParameterMemorySize);

S
sneaxiy 已提交
174 175 176
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

177 178 179 180 181 182 183
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
184
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
185 186
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
187
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
188

M
minqiyang 已提交
189
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
190 191 192 193 194 195 196 197
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
198
      .def("_run_backward",
X
Xin Pan 已提交
199
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
200
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
201
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
202
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
203
      .def("_grad_ivar",
M
minqiyang 已提交
204
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
205
           py::return_value_policy::reference)
M
minqiyang 已提交
206
      .def("_copy_to",
P
Paddle CI 已提交
207
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
208 209 210 211 212
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
213
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
214
      .def("_copy_to",
P
Paddle CI 已提交
215
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
216 217 218 219 220
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
221
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
222
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
223
           py::return_value_policy::reference)
224 225 226
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
227
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
228 229 230 231
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
232

233
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
234
      .def(py::init<const std::string &>())
235 236 237 238
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
239 240 241 242 243 244 245 246 247 248
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
249 250 251 252 253 254
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
255
          py::return_value_policy::reference)
X
polish  
Xin Pan 已提交
256
      .def_property_readonly("type", &imperative::OpBase::Type)
X
Xin Pan 已提交
257 258 259 260 261 262
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
263 264
          py::return_value_policy::reference);

X
Xin Pan 已提交
265
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
266
  layer.def(py::init<>())
X
Xin Pan 已提交
267 268 269
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
270
      });
X
Xin Pan 已提交
271

X
polish  
Xin Pan 已提交
272
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
273
      .def(py::init<>())
X
Xin Pan 已提交
274 275
      .def_static(
          "apply",
X
Xin Pan 已提交
276
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
277
              -> std::vector<imperative::VarBase *> {
278 279 280 281 282 283 284 285 286 287 288
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
289 290
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
291 292 293 294 295
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
296

297
  BindImperative(&m);
298

299 300 301
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
S
sneaxiy 已提交
302 303
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
304
      .def("_get_dims",
305
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
306
      .def("_set_dims",
Q
qijun 已提交
307
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
308
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
309
           })
Y
yuyang18 已提交
310
      .def("_set_layout",
D
dzhwinter 已提交
311 312 313
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
314
      .def("_alloc_float",
D
dzhwinter 已提交
315
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
316
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
317
           })
Y
yuyang18 已提交
318
      .def("_alloc_float",
Y
Yu Yang 已提交
319
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
320
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
321
           })
Y
yuyang18 已提交
322
      .def("_alloc_int",
Y
Yu Yang 已提交
323
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
324
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
325
           })
Y
yuyang18 已提交
326
      .def("_alloc_int",
D
dzhwinter 已提交
327
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
328
             self.mutable_data<int>(place);
Q
qijun 已提交
329
           })
Y
yuyang18 已提交
330
      .def("_alloc_int",
C
chengduoZH 已提交
331 332 333
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
334
      .def("_alloc_float",
C
chengduoZH 已提交
335 336 337
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
338 339
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
340
      .def("set", PyCPUTensorSetFromArray<double>)
341
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
342
      .def("set", PyCPUTensorSetFromArray<bool>)
343
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
344
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
345
      .def("set", PyCPUTensorSetFromArray<int8_t>)
346
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
347 348
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
349
      .def("set", PyCUDATensorSetFromArray<double>)
350
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
351
      .def("set", PyCUDATensorSetFromArray<bool>)
352
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
353
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
354
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
355 356 357 358 359 360
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
361
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
362
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
363
#endif
364
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
365 366 367 368
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
369
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
370 371
      .def("_dtype", [](Tensor &self) { return self.type(); })
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference);
Y
Yu Yang 已提交
372

X
Xin Pan 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
386
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
387
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
388
     columns, hence [5, 2].
X
Xin Pan 已提交
389 390 391

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
392 393
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
417 418
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
419 420 421 422 423 424 425 426 427 428 429 430 431 432
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
433
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
434 435 436 437 438
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
439
      .def("set_lod",
440
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
441
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
442
             LoD new_lod;
443 444
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
445 446
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
447
             self.set_lod(new_lod);
S
sneaxiy 已提交
448 449 450 451 452 453 454
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
470 471 472 473
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
474
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
475 476
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
477 478

           Args:
479
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
480
           )DOC")
481 482 483 484 485 486 487 488
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
489 490 491 492 493 494 495
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
496
      // Set above comments of set_lod.
497 498 499 500 501 502 503 504
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
505 506 507 508 509
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
510
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
511 512 513 514 515 516 517 518 519 520 521 522
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
W
wopeizl 已提交
523 524 525 526 527 528 529
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
S
sneaxiy 已提交
530
           )DOC");
D
dangqingqing 已提交
531

Q
qijun 已提交
532 533 534 535 536 537 538 539 540 541 542
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
543 544
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
545 546
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
547 548 549 550 551 552 553 554 555
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
556
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
557
      .def("rows", [](SelectedRows &self) {
558 559 560 561 562
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
563
      });
Q
qijun 已提交
564

565
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
566 567 568

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
569
      .def(py::init<>())
570
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
571
      .def("set_int",
572 573
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
574 575 576 577 578 579 580
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
581
      .def("get_tensor",
582 583
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
584 585
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
586 587 588
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
589 590 591 592 593
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
594 595 596
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
597
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
598 599 600 601 602
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
603
#endif
Y
Refine  
Yu Yang 已提交
604 605 606 607 608
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
609
           py::return_value_policy::reference);
610

S
sneaxiy 已提交
611
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
612

S
sneaxiy 已提交
613 614 615 616
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
617

S
sneaxiy 已提交
618 619
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
620
      .def("push",
S
sneaxiy 已提交
621
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
622
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
623
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
624
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
625
           })
S
sneaxiy 已提交
626 627 628 629
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
630

S
sneaxiy 已提交
631
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
632 633
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
634
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
635 636 637 638
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
639
        py::return_value_policy::copy);
S
sneaxiy 已提交
640

S
sneaxiy 已提交
641
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
661 662
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
663
      .def("var",
664
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
665
             return self.Var(name);
Y
Yu Yang 已提交
666
           },
S
sneaxiy 已提交
667 668
           py::arg("name"),
           R"DOC(
669
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
670

671
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
672
           current scope, the variable would be created. Otherwise,
673
           return the existing variable.
S
sneaxiy 已提交
674 675

           Args:
676 677
               name (str): the variable name.

S
sneaxiy 已提交
678
           Returns:
679
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
680 681 682 683
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
684
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
685
           its parent scope. Return None if not found.
686

S
sneaxiy 已提交
687 688
           Args:
               name (str): the variable name.
689

S
sneaxiy 已提交
690
           Returns:
691
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
692
           )DOC",
693
           py::return_value_policy::reference)
694
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
695 696 697 698 699 700
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
701
           py::return_value_policy::reference)
S
sneaxiy 已提交
702 703 704
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
705 706
           )DOC")
      .def("_kids", &Scope::kids);
707

S
sneaxiy 已提交
708 709 710 711 712 713
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
714 715
        R"DOC(
        Create a new scope.
716

S
sneaxiy 已提交
717 718 719
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
720 721
        py::return_value_policy::reference);

Y
Yu Yang 已提交
722 723
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
724 725
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
726 727 728 729 730 731 732 733 734 735
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
736 737
    return ret_values;
  });
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
754
  m.def("prune", [](const ProgramDesc &origin,
755
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
756
    ProgramDesc prog_with_targets(origin);
757
    for (const auto &t : targets) {
758
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
759
    }
760
    proto::ProgramDesc pruned_desc;
761
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
762
    return new ProgramDesc(pruned_desc);
763
  });
764 765 766 767
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
768 769 770
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
771 772
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
773
  // clang-format off
Y
Yu Yang 已提交
774
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
775 776
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
777
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
778 779 780
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
781
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
782
                      -> paddle::platform::DeviceContext* {
783
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
784
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
785
#else
Q
qijun 已提交
786
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
787
#endif
C
chengduoZH 已提交
788 789 790 791 792 793 794 795 796 797 798
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
799
// clang-format on
P
peizhilin 已提交
800
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
801 802
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
803 804 805 806 807
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
        )DOC")
S
sneaxiy 已提交
808 809 810 811 812 813 814 815 816 817 818 819
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
820 821 822 823 824 825
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
826
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
827

828 829 830 831
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
        )DOC")
832
      .def(py::init<>())
S
sneaxiy 已提交
833 834 835 836 837 838
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
839
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
840

841 842 843 844
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
        )DOC")
S
sneaxiy 已提交
845
      .def("__init__",
S
sneaxiy 已提交
846
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
847 848 849
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
850
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
851
           })
S
sneaxiy 已提交
852 853 854 855 856 857 858 859
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
860 861
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
862 863
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
864 865 866 867 868
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
869 870
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
871 872 873 874 875 876
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
877 878 879 880
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
881 882
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
883 884 885 886 887
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
888
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
889
             self = gpu_place;
C
chengduoZH 已提交
890 891
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
892 893
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
894
      });
Y
Yu Yang 已提交
895

Y
Yu Yang 已提交
896 897 898
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
899
                    proto::OpDesc desc;
Y
Yu Yang 已提交
900 901 902 903 904
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
905
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
906
                  })
907
      .def("run",
908
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
909 910 911
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
912
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
913 914 915 916 917
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
918 919 920 921 922 923 924
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
925 926
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
927
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
928
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
929 930 931 932
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
933

F
fengjiayi 已提交
934
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
935
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
936
      .def("close", &Executor::Close)
D
dongdaxiang 已提交
937
      .def("run_from_dataset", &Executor::RunFromDataset)
S
sneaxiy 已提交
938
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
939 940
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
941
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
942 943
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
944
      });
S
sneaxiy 已提交
945

D
dzhwinter 已提交
946
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
947
  m.def("init_glog", framework::InitGLOG);
948
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
949 950
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
951

952
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
953
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
954
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
955
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
956
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
957 958 959 960 961 962
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
963

964
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
965
  m.def("get_fetch_variable", framework::GetFetchVariable);
966
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
967

X
Xin Pan 已提交
968 969
  m.def("_is_program_version_supported", IsProgramVersionSupported);

970 971 972 973 974
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
975

Y
Yu Yang 已提交
976 977 978 979 980 981 982 983 984
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
985
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
986 987
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
988 989 990 991 992 993 994 995 996 997
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
998 999 1000 1001 1002 1003 1004
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
1005

D
dzhwinter 已提交
1006 1007 1008
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
1009
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1010
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1011
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1012

P
peizhilin 已提交
1013
#ifndef _WIN32
D
dangqingqing 已提交
1014 1015 1016
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1017
#endif
P
peizhilin 已提交
1018
#endif
Y
Yu Yang 已提交
1019

1020 1021 1022 1023
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1024
      .value("kAll", platform::ProfilerState::kAll)
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1038
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1039
  m.def("reset_profiler", platform::ResetProfiler);
1040
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1041 1042 1043
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1044

1045 1046
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1047
      .def("has", &ir::Pass::Has)
1048 1049 1050
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1051
           })
1052
      .def(
1053
          "set",
1054 1055 1056
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1057 1058
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1059 1060
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1061
        self.Apply(graph.get());
F
flame 已提交
1062
      });
1063

X
fix  
Xin Pan 已提交
1064 1065
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1080
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1081

Y
yuyang18 已提交
1082
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1083 1084 1085 1086
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1098 1099 1100

        )DOC");

Y
yuyang18 已提交
1101
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1102 1103 1104 1105 1106
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1117
      .def_property(
1118 1119 1120 1121
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1122 1123 1124 1125
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1126 1127 1128 1129 1130
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1131 1132 1133 1134
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1135 1136 1137 1138 1139 1140 1141
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1153
              )DOC")
Q
Qiao Longfei 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1165 1166 1167 1168 1169
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1170

Y
yuyang18 已提交
1171
  exec_strategy.def_property(
Y
yuyang18 已提交
1172 1173 1174 1175 1176 1177 1178
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1179 1180
      });

C
chengduo 已提交
1181 1182 1183 1184
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1196
)DOC");
Y
yuyang18 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1213
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1214
            self.reduce_ = strategy;
C
chengduo 已提交
1215 1216 1217 1218 1219 1220 1221
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1222 1223 1224 1225 1226
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1227
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1228
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1229 1230 1231 1232 1233 1234
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1235 1236 1237 1238
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1239
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1240
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1241 1242 1243 1244
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1245 1246 1247 1248 1249 1250
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1251
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1261
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1262 1263
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1264
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1265 1266 1267 1268 1269 1270
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1283 1284 1285 1286 1287 1288
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1289
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1290 1291 1292 1293 1294
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
                      Default False.)DOC")
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) { return self.fuse_broadcast_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1346 1347 1348 1349
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1350 1351 1352 1353
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
Q
can run  
Qiao Longfei 已提交
1354 1355 1356
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1357
      .def_property(
D
dzhwinter 已提交
1358 1359 1360
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1361 1362 1363 1364
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1365 1366 1367 1368
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1369
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1370
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1371 1372 1373 1374 1375
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1376 1377

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1378
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1379
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1380
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1381 1382 1383 1384
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1385 1386 1387 1388 1389
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1390 1391 1392 1393
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1394 1395 1396 1397 1398 1399
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1400

1401
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1402
  BindAsyncExecutor(&m);
D
dongdaxiang 已提交
1403
  BindFleetWrapper(&m);
F
flame 已提交
1404 1405
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1406
  BindInferenceApi(&m);
1407
  BindDataset(&m);
L
Luo Tao 已提交
1408
}
1409
}  // namespace pybind
1410
}  // namespace paddle