Trainer.cpp 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "PaddleAPI.h"
E
emailweixu 已提交
16
#include "PaddleAPIPrivate.h"
Z
zhangjinchao01 已提交
17 18 19

#include <stdlib.h>
#include <atomic>
Y
Yu Yang 已提交
20
#include <memory>
Z
zhangjinchao01 已提交
21

X
Xin Pan 已提交
22
#include "paddle/legacy/gserver/gradientmachines/NeuralNetwork.h"
X
Xin Pan 已提交
23 24 25
#include "paddle/legacy/trainer/ParamUtil.h"
#include "paddle/legacy/trainer/Trainer.h"
#include "paddle/legacy/trainer/TrainerInternal.h"
Z
zhangjinchao01 已提交
26 27 28 29
#include "paddle/utils/Flags.h"

using paddle::real;

30 31 32
DECLARE_string(config);
DECLARE_string(init_model_path);
DECLARE_int32(start_pass);
Z
zhangjinchao01 已提交
33 34

struct TrainerPrivate : public paddle::Trainer {
E
emailweixu 已提交
35 36 37 38 39 40 41 42 43
  bool _trainOneBatch(size_t batchSize);
  bool forwardOneBatch(size_t batchSize);
  void forwardOneDataBatch(const std::vector<paddle::Argument>& inArgs);
  void setBatchSize(size_t batchSize);
  std::vector<paddle::Argument>& getForwardOutput();

  void startTestPeriod();
  void finishTestPeriod();
  void testOneDataBatch(const paddle::DataBatch& dataBatch);
Z
zhangjinchao01 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
  TrainerPrivate() : paddle::Trainer() {}
};

Trainer::Trainer() : m(new TrainerPrivate()) {
  auto conf = paddle::TrainerConfigHelper::createFromFlags();
  if (conf != nullptr) {
    m->init(conf);
  }
}

Trainer::~Trainer() { delete m; }

Trainer* Trainer::createByCommandLine() throw(IOError) {
  auto retv = new Trainer();
  if (retv->m->getConfig().IsInitialized()) {
    return retv;
  } else {
    throw IOError();
  }
}

E
emailweixu 已提交
65 66
Trainer::Trainer(TrainerConfig* config, GradientMachine* gm)
    : m(new TrainerPrivate()) {
67
  m->init(config->m->conf, /* testing= */ false, gm ? gm->m->machine : nullptr);
E
emailweixu 已提交
68
}
Z
zhangjinchao01 已提交
69

70 71
Trainer* Trainer::create(TrainerConfig* config,
                         GradientMachine* gm) throw(IOError) {
E
emailweixu 已提交
72 73 74 75 76 77 78
  auto retv = new Trainer(config, gm);
  if (retv->m->getConfig().IsInitialized()) {
    return retv;
  } else {
    retv->m->getConfig().CheckInitialized();
    throw IOError();
  }
Z
zhangjinchao01 已提交
79 80
}

E
emailweixu 已提交
81
void Trainer::startTrain() { m->startTrain(); }
Z
zhangjinchao01 已提交
82

E
emailweixu 已提交
83
void Trainer::finishTrain() { m->finishTrain(); }
Z
zhangjinchao01 已提交
84 85 86 87 88

void Trainer::startTrainPass() { m->startTrainPass(); }

void Trainer::finishTrainPass() { m->finishTrainPass(); }

E
emailweixu 已提交
89 90 91 92 93
void Trainer::trainOneDataBatch(size_t batchSize, const Arguments& inArgs) {
  paddle::DataBatch dataBatch;
  dataBatch.getStreams() = inArgs.m->outputs;
  dataBatch.setSize(batchSize);
  m->trainOneDataBatch(dataBatch);
Z
zhangjinchao01 已提交
94 95
}

E
emailweixu 已提交
96 97
bool Trainer::trainOneBatch(size_t batchSize) {
  return m->_trainOneBatch(batchSize);
Z
zhangjinchao01 已提交
98 99
}

E
emailweixu 已提交
100 101 102 103 104 105
bool TrainerPrivate::_trainOneBatch(size_t batchSize) {
  paddle::DataBatch dataBatch;
  CHECK(dataProvider_) << "data_provider is not specified";
  int num = dataProvider_->getNextBatch(batchSize, &dataBatch);
  if (num == 0) {
    return false;
Z
zhangjinchao01 已提交
106
  }
E
emailweixu 已提交
107 108
  trainOneDataBatch(dataBatch);
  return false;
Z
zhangjinchao01 已提交
109 110
}

E
emailweixu 已提交
111 112 113
void TrainerPrivate::startTestPeriod() {
  if (!tester_) {
    createTester();
Z
zhangjinchao01 已提交
114
  }
E
emailweixu 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128
  tester_->startTestPeriod();
}

void Trainer::startTestPeriod() { m->startTestPeriod(); }

void TrainerPrivate::testOneDataBatch(const paddle::DataBatch& dataBatch) {
  tester_->testOneDataBatch(dataBatch, &forwardOutput_);
}

void Trainer::testOneDataBatch(size_t batchSize, const Arguments& args) {
  paddle::DataBatch dataBatch;
  dataBatch.getStreams() = args.m->outputs;
  dataBatch.setSize(batchSize);
  m->testOneDataBatch(dataBatch);
Z
zhangjinchao01 已提交
129 130
}

E
emailweixu 已提交
131 132 133
void TrainerPrivate::finishTestPeriod() { tester_->finishTestPeriod(); }
void Trainer::finishTestPeriod() { m->finishTestPeriod(); }

L
liaogang 已提交
134
Arguments* Trainer::getLayerOutput(const std::string& layerName) const {
L
liaogang 已提交
135
  auto nn = this->m->getGradientMachine();
Z
zhangjinchao01 已提交
136
  CHECK(nn) << "trainerInternal_.getGradientMachine() is not NeuralNetwork";
L
liaogang 已提交
137 138
  auto arg = nn->getLayerOutput(layerName);
  return Arguments::createByPaddleArgument(&arg);
Z
zhangjinchao01 已提交
139 140
}

141 142 143
void Trainer::forwardOneBatch(size_t batchSize) {
  m->forwardOneBatch(batchSize);
}
E
emailweixu 已提交
144

145
bool TrainerPrivate::forwardOneBatch(size_t batchSize) {
E
emailweixu 已提交
146 147 148 149 150
  CHECK(dataProvider_) << "data_provider is not specified";
  paddle::DataBatch dataBatch;
  int num = dataProvider_->getNextBatch(batchSize, &dataBatch);
  if (num == 0) {
    return false;
Z
zhangjinchao01 已提交
151 152
  }

E
emailweixu 已提交
153 154
  forwardOneDataBatch(dataBatch.getStreams());
  return true;
Z
zhangjinchao01 已提交
155 156
}

E
emailweixu 已提交
157 158 159
void TrainerPrivate::forwardOneDataBatch(
    const std::vector<paddle::Argument>& inArgs) {
  std::vector<paddle::Argument>& outArgs = forwardOutput_;
Z
zhangjinchao01 已提交
160 161

  if (config_->getOptConfig().use_sparse_remote_updater()) {
E
emailweixu 已提交
162 163
    trainerInternal_.getGradientMachine()->prefetch(inArgs);
    trainerInternal_.getParameterUpdater()->getParametersRemote();
Z
zhangjinchao01 已提交
164
  }
E
emailweixu 已提交
165 166 167 168 169 170
  trainerInternal_.getGradientMachine()->forward(
      inArgs, &outArgs, paddle::PASS_TEST);
}

Arguments* Trainer::getForwardOutput() {
  return Arguments::createByPaddleArgumentVector(&m->getForwardOutput());
Z
zhangjinchao01 已提交
171 172
}

E
emailweixu 已提交
173 174
std::vector<paddle::Argument>& TrainerPrivate::getForwardOutput() {
  return forwardOutput_;
Z
zhangjinchao01 已提交
175
}