yolo_fpn.py 33.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
G
Guanghua Yu 已提交
19
from ppdet.modeling.layers import DropBlock
20
from ..backbones.darknet import ConvBNLayer
21 22
from ..shape_spec import ShapeSpec

23
__all__ = ['YOLOv3FPN', 'PPYOLOFPN', 'PPYOLOTinyFPN', 'PPYOLOPAN']
24

Q
qingqing01 已提交
25

26
def add_coord(x, data_format):
27
    b = paddle.shape(x)[0]
28
    if data_format == 'NCHW':
29
        h, w = x.shape[2], x.shape[3]
W
wangxinxin08 已提交
30
    else:
31
        h, w = x.shape[1], x.shape[2]
W
wangxinxin08 已提交
32

W
wangxinxin08 已提交
33 34
    gx = paddle.arange(w, dtype=x.dtype) / ((w - 1.) * 2.0) - 1.
    gy = paddle.arange(h, dtype=x.dtype) / ((h - 1.) * 2.0) - 1.
W
wangxinxin08 已提交
35

36
    if data_format == 'NCHW':
W
wangxinxin08 已提交
37
        gx = gx.reshape([1, 1, 1, w]).expand([b, 1, h, w])
W
wangxinxin08 已提交
38 39
        gy = gy.reshape([1, 1, h, 1]).expand([b, 1, h, w])
    else:
W
wangxinxin08 已提交
40
        gx = gx.reshape([1, 1, w, 1]).expand([b, h, w, 1])
W
wangxinxin08 已提交
41 42
        gy = gy.reshape([1, h, 1, 1]).expand([b, h, w, 1])

W
wangxinxin08 已提交
43 44
    gx.stop_gradient = True
    gy.stop_gradient = True
W
wangxinxin08 已提交
45 46 47
    return gx, gy


Q
qingqing01 已提交
48
class YoloDetBlock(nn.Layer):
49 50 51 52 53 54 55
    def __init__(self,
                 ch_in,
                 channel,
                 norm_type,
                 freeze_norm=False,
                 name='',
                 data_format='NCHW'):
W
wangxinxin08 已提交
56 57 58 59 60 61 62
        """
        YOLODetBlock layer for yolov3, see https://arxiv.org/abs/1804.02767

        Args:
            ch_in (int): input channel
            channel (int): base channel
            norm_type (str): batch norm type
63
            freeze_norm (bool): whether to freeze norm, default False
W
wangxinxin08 已提交
64 65 66
            name (str): layer name
            data_format (str): data format, NCHW or NHWC
        """
Q
qingqing01 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        super(YoloDetBlock, self).__init__()
        self.ch_in = ch_in
        self.channel = channel
        assert channel % 2 == 0, \
            "channel {} cannot be divided by 2".format(channel)
        conv_def = [
            ['conv0', ch_in, channel, 1, '.0.0'],
            ['conv1', channel, channel * 2, 3, '.0.1'],
            ['conv2', channel * 2, channel, 1, '.1.0'],
            ['conv3', channel, channel * 2, 3, '.1.1'],
            ['route', channel * 2, channel, 1, '.2'],
        ]

        self.conv_module = nn.Sequential()
        for idx, (conv_name, ch_in, ch_out, filter_size,
                  post_name) in enumerate(conv_def):
            self.conv_module.add_sublayer(
                conv_name,
                ConvBNLayer(
                    ch_in=ch_in,
                    ch_out=ch_out,
                    filter_size=filter_size,
                    padding=(filter_size - 1) // 2,
                    norm_type=norm_type,
91
                    freeze_norm=freeze_norm,
92
                    data_format=data_format,
Q
qingqing01 已提交
93 94 95 96 97 98 99 100
                    name=name + post_name))

        self.tip = ConvBNLayer(
            ch_in=channel,
            ch_out=channel * 2,
            filter_size=3,
            padding=1,
            norm_type=norm_type,
101
            freeze_norm=freeze_norm,
102
            data_format=data_format,
Q
qingqing01 已提交
103 104 105 106 107 108 109 110
            name=name + '.tip')

    def forward(self, inputs):
        route = self.conv_module(inputs)
        tip = self.tip(route)
        return route, tip


W
wangxinxin08 已提交
111
class SPP(nn.Layer):
112 113 114 115 116 117
    def __init__(self,
                 ch_in,
                 ch_out,
                 k,
                 pool_size,
                 norm_type,
118 119
                 freeze_norm=False,
                 name='',
W
wangxinxin08 已提交
120
                 act='leaky',
121
                 data_format='NCHW'):
W
wangxinxin08 已提交
122 123 124 125 126 127 128 129
        """
        SPP layer, which consist of four pooling layer follwed by conv layer

        Args:
            ch_in (int): input channel of conv layer
            ch_out (int): output channel of conv layer
            k (int): kernel size of conv layer
            norm_type (str): batch norm type
130
            freeze_norm (bool): whether to freeze norm, default False
W
wangxinxin08 已提交
131
            name (str): layer name
132
            act (str): activation function
W
wangxinxin08 已提交
133 134
            data_format (str): data format, NCHW or NHWC
        """
W
wangxinxin08 已提交
135 136
        super(SPP, self).__init__()
        self.pool = []
W
wangxinxin08 已提交
137
        self.data_format = data_format
W
wangxinxin08 已提交
138 139 140 141 142 143 144
        for size in pool_size:
            pool = self.add_sublayer(
                '{}.pool1'.format(name),
                nn.MaxPool2D(
                    kernel_size=size,
                    stride=1,
                    padding=size // 2,
145
                    data_format=data_format,
W
wangxinxin08 已提交
146 147 148
                    ceil_mode=False))
            self.pool.append(pool)
        self.conv = ConvBNLayer(
149 150 151 152 153
            ch_in,
            ch_out,
            k,
            padding=k // 2,
            norm_type=norm_type,
154
            freeze_norm=freeze_norm,
155
            name=name,
W
wangxinxin08 已提交
156
            act=act,
157
            data_format=data_format)
W
wangxinxin08 已提交
158 159 160 161 162

    def forward(self, x):
        outs = [x]
        for pool in self.pool:
            outs.append(pool(x))
W
wangxinxin08 已提交
163 164 165 166 167
        if self.data_format == "NCHW":
            y = paddle.concat(outs, axis=1)
        else:
            y = paddle.concat(outs, axis=-1)

W
wangxinxin08 已提交
168 169 170 171 172
        y = self.conv(y)
        return y


class CoordConv(nn.Layer):
173 174 175 176 177 178
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size,
                 padding,
                 norm_type,
179 180
                 freeze_norm=False,
                 name='',
181
                 data_format='NCHW'):
W
wangxinxin08 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194
        """
        CoordConv layer

        Args:
            ch_in (int): input channel
            ch_out (int): output channel
            filter_size (int): filter size, default 3
            padding (int): padding size, default 0
            norm_type (str): batch norm type, default bn
            name (str): layer name
            data_format (str): data format, NCHW or NHWC

        """
W
wangxinxin08 已提交
195 196 197 198 199 200 201
        super(CoordConv, self).__init__()
        self.conv = ConvBNLayer(
            ch_in + 2,
            ch_out,
            filter_size=filter_size,
            padding=padding,
            norm_type=norm_type,
202
            freeze_norm=freeze_norm,
203
            data_format=data_format,
W
wangxinxin08 已提交
204
            name=name)
205
        self.data_format = data_format
W
wangxinxin08 已提交
206 207

    def forward(self, x):
208
        gx, gy = add_coord(x, self.data_format)
209 210 211 212
        if self.data_format == 'NCHW':
            y = paddle.concat([x, gx, gy], axis=1)
        else:
            y = paddle.concat([x, gx, gy], axis=-1)
W
wangxinxin08 已提交
213 214 215 216 217
        y = self.conv(y)
        return y


class PPYOLODetBlock(nn.Layer):
218
    def __init__(self, cfg, name, data_format='NCHW'):
W
wangxinxin08 已提交
219 220 221 222 223 224 225 226
        """
        PPYOLODetBlock layer

        Args:
            cfg (list): layer configs for this block
            name (str): block name
            data_format (str): data format, NCHW or NHWC
        """
W
wangxinxin08 已提交
227 228 229
        super(PPYOLODetBlock, self).__init__()
        self.conv_module = nn.Sequential()
        for idx, (conv_name, layer, args, kwargs) in enumerate(cfg[:-1]):
230 231
            kwargs.update(
                name='{}.{}'.format(name, conv_name), data_format=data_format)
W
wangxinxin08 已提交
232 233 234
            self.conv_module.add_sublayer(conv_name, layer(*args, **kwargs))

        conv_name, layer, args, kwargs = cfg[-1]
235 236
        kwargs.update(
            name='{}.{}'.format(name, conv_name), data_format=data_format)
W
wangxinxin08 已提交
237 238 239 240 241 242 243 244
        self.tip = layer(*args, **kwargs)

    def forward(self, inputs):
        route = self.conv_module(inputs)
        tip = self.tip(route)
        return route, tip


K
Kaipeng Deng 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
class PPYOLOTinyDetBlock(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 name,
                 drop_block=False,
                 block_size=3,
                 keep_prob=0.9,
                 data_format='NCHW'):
        """
        PPYOLO Tiny DetBlock layer
        Args:
            ch_in (list): input channel number
            ch_out (list): output channel number
            name (str): block name
            drop_block: whether user DropBlock
            block_size: drop block size
            keep_prob: probability to keep block in DropBlock
            data_format (str): data format, NCHW or NHWC
        """
        super(PPYOLOTinyDetBlock, self).__init__()
        self.drop_block_ = drop_block
        self.conv_module = nn.Sequential()

        cfgs = [
            # name, in channels, out channels, filter_size, 
            # stride, padding, groups
            ['.0', ch_in, ch_out, 1, 1, 0, 1],
            ['.1', ch_out, ch_out, 5, 1, 2, ch_out],
            ['.2', ch_out, ch_out, 1, 1, 0, 1],
            ['.route', ch_out, ch_out, 5, 1, 2, ch_out],
        ]
        for cfg in cfgs:
            conv_name, conv_ch_in, conv_ch_out, filter_size, stride, padding, \
                    groups = cfg
            self.conv_module.add_sublayer(
                name + conv_name,
                ConvBNLayer(
                    ch_in=conv_ch_in,
                    ch_out=conv_ch_out,
                    filter_size=filter_size,
                    stride=stride,
                    padding=padding,
                    groups=groups,
                    name=name + conv_name))

        self.tip = ConvBNLayer(
            ch_in=ch_out,
            ch_out=ch_out,
            filter_size=1,
            stride=1,
            padding=0,
            groups=1,
            name=name + conv_name)

        if self.drop_block_:
            self.drop_block = DropBlock(
                block_size=block_size,
                keep_prob=keep_prob,
                data_format=data_format,
                name=name + '.dropblock')

    def forward(self, inputs):
        if self.drop_block_:
            inputs = self.drop_block(inputs)
        route = self.conv_module(inputs)
        tip = self.tip(route)
        return route, tip


W
wangxinxin08 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
class PPYOLODetBlockCSP(nn.Layer):
    def __init__(self,
                 cfg,
                 ch_in,
                 ch_out,
                 act,
                 norm_type,
                 name,
                 data_format='NCHW'):
        """
        PPYOLODetBlockCSP layer

        Args:
            cfg (list): layer configs for this block
            ch_in (int): input channel
            ch_out (int): output channel
            act (str): default mish
            name (str): block name
            data_format (str): data format, NCHW or NHWC
        """
        super(PPYOLODetBlockCSP, self).__init__()
        self.data_format = data_format
        self.conv1 = ConvBNLayer(
            ch_in,
            ch_out,
            1,
            padding=0,
            act=act,
            norm_type=norm_type,
            name=name + '.left',
            data_format=data_format)
        self.conv2 = ConvBNLayer(
            ch_in,
            ch_out,
            1,
            padding=0,
            act=act,
            norm_type=norm_type,
            name=name + '.right',
            data_format=data_format)
        self.conv3 = ConvBNLayer(
            ch_out * 2,
            ch_out * 2,
            1,
            padding=0,
            act=act,
            norm_type=norm_type,
            name=name,
            data_format=data_format)
        self.conv_module = nn.Sequential()
        for idx, (layer_name, layer, args, kwargs) in enumerate(cfg):
            kwargs.update(name=name + layer_name, data_format=data_format)
            self.conv_module.add_sublayer(layer_name, layer(*args, **kwargs))

    def forward(self, inputs):
        conv_left = self.conv1(inputs)
        conv_right = self.conv2(inputs)
        conv_left = self.conv_module(conv_left)
        if self.data_format == 'NCHW':
            conv = paddle.concat([conv_left, conv_right], axis=1)
        else:
            conv = paddle.concat([conv_left, conv_right], axis=-1)

        conv = self.conv3(conv)
        return conv, conv


Q
qingqing01 已提交
382 383 384
@register
@serializable
class YOLOv3FPN(nn.Layer):
385
    __shared__ = ['norm_type', 'data_format']
Q
qingqing01 已提交
386

387 388 389
    def __init__(self,
                 in_channels=[256, 512, 1024],
                 norm_type='bn',
390
                 freeze_norm=False,
391
                 data_format='NCHW'):
W
wangxinxin08 已提交
392 393 394 395 396 397 398 399 400
        """
        YOLOv3FPN layer

        Args:
            in_channels (list): input channels for fpn
            norm_type (str): batch norm type, default bn
            data_format (str): data format, NCHW or NHWC

        """
Q
qingqing01 已提交
401
        super(YOLOv3FPN, self).__init__()
402 403 404 405 406
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels
        self.num_blocks = len(in_channels)

        self._out_channels = []
Q
qingqing01 已提交
407 408
        self.yolo_blocks = []
        self.routes = []
409
        self.data_format = data_format
Q
qingqing01 已提交
410 411
        for i in range(self.num_blocks):
            name = 'yolo_block.{}'.format(i)
412 413 414
            in_channel = in_channels[-i - 1]
            if i > 0:
                in_channel += 512 // (2**i)
Q
qingqing01 已提交
415 416 417
            yolo_block = self.add_sublayer(
                name,
                YoloDetBlock(
418
                    in_channel,
Q
qingqing01 已提交
419 420
                    channel=512 // (2**i),
                    norm_type=norm_type,
421
                    freeze_norm=freeze_norm,
422
                    data_format=data_format,
Q
qingqing01 已提交
423 424
                    name=name))
            self.yolo_blocks.append(yolo_block)
425 426
            # tip layer output channel doubled
            self._out_channels.append(1024 // (2**i))
Q
qingqing01 已提交
427 428 429 430 431 432 433 434 435 436 437 438

            if i < self.num_blocks - 1:
                name = 'yolo_transition.{}'.format(i)
                route = self.add_sublayer(
                    name,
                    ConvBNLayer(
                        ch_in=512 // (2**i),
                        ch_out=256 // (2**i),
                        filter_size=1,
                        stride=1,
                        padding=0,
                        norm_type=norm_type,
439
                        freeze_norm=freeze_norm,
440
                        data_format=data_format,
Q
qingqing01 已提交
441 442 443
                        name=name))
                self.routes.append(route)

444
    def forward(self, blocks, for_mot=False):
Q
qingqing01 已提交
445 446 447
        assert len(blocks) == self.num_blocks
        blocks = blocks[::-1]
        yolo_feats = []
448 449

        # add embedding features output for multi-object tracking model
450 451
        if for_mot:
            emb_feats = []
452

Q
qingqing01 已提交
453 454
        for i, block in enumerate(blocks):
            if i > 0:
455 456 457 458
                if self.data_format == 'NCHW':
                    block = paddle.concat([route, block], axis=1)
                else:
                    block = paddle.concat([route, block], axis=-1)
Q
qingqing01 已提交
459 460 461
            route, tip = self.yolo_blocks[i](block)
            yolo_feats.append(tip)

462
            if for_mot:
463
                # add embedding features output
464 465
                emb_feats.append(route)

Q
qingqing01 已提交
466 467
            if i < self.num_blocks - 1:
                route = self.routes[i](route)
468 469
                route = F.interpolate(
                    route, scale_factor=2., data_format=self.data_format)
Q
qingqing01 已提交
470

471 472 473 474
        if for_mot:
            return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats}
        else:
            return yolo_feats
W
wangxinxin08 已提交
475

476 477 478 479 480 481 482 483
    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]

W
wangxinxin08 已提交
484 485 486 487

@register
@serializable
class PPYOLOFPN(nn.Layer):
488
    __shared__ = ['norm_type', 'data_format']
W
wangxinxin08 已提交
489

490 491 492
    def __init__(self,
                 in_channels=[512, 1024, 2048],
                 norm_type='bn',
493
                 freeze_norm=False,
494
                 data_format='NCHW',
W
wangxinxin08 已提交
495
                 coord_conv=False,
496
                 conv_block_num=2,
W
wangxinxin08 已提交
497 498 499 500
                 drop_block=False,
                 block_size=3,
                 keep_prob=0.9,
                 spp=False):
W
wangxinxin08 已提交
501 502 503 504 505 506 507
        """
        PPYOLOFPN layer

        Args:
            in_channels (list): input channels for fpn
            norm_type (str): batch norm type, default bn
            data_format (str): data format, NCHW or NHWC
W
wangxinxin08 已提交
508 509 510 511 512 513
            coord_conv (bool): whether use CoordConv or not
            conv_block_num (int): conv block num of each pan block
            drop_block (bool): whether use DropBlock or not
            block_size (int): block size of DropBlock
            keep_prob (float): keep probability of DropBlock
            spp (bool): whether use spp or not
W
wangxinxin08 已提交
514 515

        """
W
wangxinxin08 已提交
516
        super(PPYOLOFPN, self).__init__()
517 518 519
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels
        self.num_blocks = len(in_channels)
W
wangxinxin08 已提交
520
        # parse kwargs
W
wangxinxin08 已提交
521 522 523 524 525 526
        self.coord_conv = coord_conv
        self.drop_block = drop_block
        self.block_size = block_size
        self.keep_prob = keep_prob
        self.spp = spp
        self.conv_block_num = conv_block_num
W
wangxinxin08 已提交
527
        self.data_format = data_format
W
wangxinxin08 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540
        if self.coord_conv:
            ConvLayer = CoordConv
        else:
            ConvLayer = ConvBNLayer

        if self.drop_block:
            dropblock_cfg = [[
                'dropblock', DropBlock, [self.block_size, self.keep_prob],
                dict()
            ]]
        else:
            dropblock_cfg = []

541
        self._out_channels = []
W
wangxinxin08 已提交
542 543
        self.yolo_blocks = []
        self.routes = []
544 545 546
        for i, ch_in in enumerate(self.in_channels[::-1]):
            if i > 0:
                ch_in += 512 // (2**i)
W
wangxinxin08 已提交
547
            channel = 64 * (2**self.num_blocks) // (2**i)
W
wangxinxin08 已提交
548 549 550 551 552 553 554
            base_cfg = []
            c_in, c_out = ch_in, channel
            for j in range(self.conv_block_num):
                base_cfg += [
                    [
                        'conv{}'.format(2 * j), ConvLayer, [c_in, c_out, 1],
                        dict(
555 556 557
                            padding=0,
                            norm_type=norm_type,
                            freeze_norm=freeze_norm)
W
wangxinxin08 已提交
558 559 560 561
                    ],
                    [
                        'conv{}'.format(2 * j + 1), ConvBNLayer,
                        [c_out, c_out * 2, 3], dict(
562 563 564
                            padding=1,
                            norm_type=norm_type,
                            freeze_norm=freeze_norm)
W
wangxinxin08 已提交
565 566 567 568 569 570
                    ],
                ]
                c_in, c_out = c_out * 2, c_out

            base_cfg += [[
                'route', ConvLayer, [c_in, c_out, 1], dict(
571
                    padding=0, norm_type=norm_type, freeze_norm=freeze_norm)
W
wangxinxin08 已提交
572 573
            ], [
                'tip', ConvLayer, [c_out, c_out * 2, 3], dict(
574
                    padding=1, norm_type=norm_type, freeze_norm=freeze_norm)
W
wangxinxin08 已提交
575 576 577 578 579 580 581
            ]]

            if self.conv_block_num == 2:
                if i == 0:
                    if self.spp:
                        spp_cfg = [[
                            'spp', SPP, [channel * 4, channel, 1], dict(
582 583 584
                                pool_size=[5, 9, 13],
                                norm_type=norm_type,
                                freeze_norm=freeze_norm)
W
wangxinxin08 已提交
585 586 587 588 589 590 591 592 593
                        ]]
                    else:
                        spp_cfg = []
                    cfg = base_cfg[0:3] + spp_cfg + base_cfg[
                        3:4] + dropblock_cfg + base_cfg[4:6]
                else:
                    cfg = base_cfg[0:2] + dropblock_cfg + base_cfg[2:6]
            elif self.conv_block_num == 0:
                if self.spp and i == 0:
W
wangxinxin08 已提交
594
                    spp_cfg = [[
W
wangxinxin08 已提交
595
                        'spp', SPP, [c_in * 4, c_in, 1], dict(
596 597 598
                            pool_size=[5, 9, 13],
                            norm_type=norm_type,
                            freeze_norm=freeze_norm)
W
wangxinxin08 已提交
599 600 601
                    ]]
                else:
                    spp_cfg = []
W
wangxinxin08 已提交
602
                cfg = spp_cfg + dropblock_cfg + base_cfg
W
wangxinxin08 已提交
603 604 605
            name = 'yolo_block.{}'.format(i)
            yolo_block = self.add_sublayer(name, PPYOLODetBlock(cfg, name))
            self.yolo_blocks.append(yolo_block)
606
            self._out_channels.append(channel * 2)
W
wangxinxin08 已提交
607 608 609 610 611 612
            if i < self.num_blocks - 1:
                name = 'yolo_transition.{}'.format(i)
                route = self.add_sublayer(
                    name,
                    ConvBNLayer(
                        ch_in=channel,
W
wangxinxin08 已提交
613
                        ch_out=256 // (2**i),
W
wangxinxin08 已提交
614 615 616 617
                        filter_size=1,
                        stride=1,
                        padding=0,
                        norm_type=norm_type,
618
                        freeze_norm=freeze_norm,
619
                        data_format=data_format,
W
wangxinxin08 已提交
620 621 622
                        name=name))
                self.routes.append(route)

623
    def forward(self, blocks, for_mot=False):
W
wangxinxin08 已提交
624 625 626
        assert len(blocks) == self.num_blocks
        blocks = blocks[::-1]
        yolo_feats = []
627 628

        # add embedding features output for multi-object tracking model
629 630
        if for_mot:
            emb_feats = []
631

W
wangxinxin08 已提交
632 633
        for i, block in enumerate(blocks):
            if i > 0:
634 635 636 637
                if self.data_format == 'NCHW':
                    block = paddle.concat([route, block], axis=1)
                else:
                    block = paddle.concat([route, block], axis=-1)
W
wangxinxin08 已提交
638 639 640
            route, tip = self.yolo_blocks[i](block)
            yolo_feats.append(tip)

641
            if for_mot:
642
                # add embedding features output
643 644
                emb_feats.append(route)

W
wangxinxin08 已提交
645 646
            if i < self.num_blocks - 1:
                route = self.routes[i](route)
647 648
                route = F.interpolate(
                    route, scale_factor=2., data_format=self.data_format)
W
wangxinxin08 已提交
649

650 651 652 653
        if for_mot:
            return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats}
        else:
            return yolo_feats
654 655 656 657 658 659 660 661

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]
K
Kaipeng Deng 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741


@register
@serializable
class PPYOLOTinyFPN(nn.Layer):
    __shared__ = ['norm_type', 'data_format']

    def __init__(self,
                 in_channels=[80, 56, 34],
                 detection_block_channels=[160, 128, 96],
                 norm_type='bn',
                 data_format='NCHW',
                 **kwargs):
        """
        PPYOLO Tiny FPN layer
        Args:
            in_channels (list): input channels for fpn
            detection_block_channels (list): channels in fpn
            norm_type (str): batch norm type, default bn
            data_format (str): data format, NCHW or NHWC
            kwargs: extra key-value pairs, such as parameter of DropBlock and spp 
        """
        super(PPYOLOTinyFPN, self).__init__()
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels[::-1]
        assert len(detection_block_channels
                   ) > 0, "detection_block_channelslength should > 0"
        self.detection_block_channels = detection_block_channels
        self.data_format = data_format
        self.num_blocks = len(in_channels)
        # parse kwargs
        self.drop_block = kwargs.get('drop_block', False)
        self.block_size = kwargs.get('block_size', 3)
        self.keep_prob = kwargs.get('keep_prob', 0.9)

        self.spp_ = kwargs.get('spp', False)
        if self.spp_:
            self.spp = SPP(self.in_channels[0] * 4,
                           self.in_channels[0],
                           k=1,
                           pool_size=[5, 9, 13],
                           norm_type=norm_type,
                           name='spp')

        self._out_channels = []
        self.yolo_blocks = []
        self.routes = []
        for i, (
                ch_in, ch_out
        ) in enumerate(zip(self.in_channels, self.detection_block_channels)):
            name = 'yolo_block.{}'.format(i)
            if i > 0:
                ch_in += self.detection_block_channels[i - 1]
            yolo_block = self.add_sublayer(
                name,
                PPYOLOTinyDetBlock(
                    ch_in,
                    ch_out,
                    name,
                    drop_block=self.drop_block,
                    block_size=self.block_size,
                    keep_prob=self.keep_prob))
            self.yolo_blocks.append(yolo_block)
            self._out_channels.append(ch_out)

            if i < self.num_blocks - 1:
                name = 'yolo_transition.{}'.format(i)
                route = self.add_sublayer(
                    name,
                    ConvBNLayer(
                        ch_in=ch_out,
                        ch_out=ch_out,
                        filter_size=1,
                        stride=1,
                        padding=0,
                        norm_type=norm_type,
                        data_format=data_format,
                        name=name))
                self.routes.append(route)

742
    def forward(self, blocks, for_mot=False):
K
Kaipeng Deng 已提交
743 744 745
        assert len(blocks) == self.num_blocks
        blocks = blocks[::-1]
        yolo_feats = []
746 747 748 749 750

        # add embedding features output for multi-object tracking model
        if for_mot:
            emb_feats = []

K
Kaipeng Deng 已提交
751 752 753 754 755 756 757 758 759 760 761 762
        for i, block in enumerate(blocks):
            if i == 0 and self.spp_:
                block = self.spp(block)

            if i > 0:
                if self.data_format == 'NCHW':
                    block = paddle.concat([route, block], axis=1)
                else:
                    block = paddle.concat([route, block], axis=-1)
            route, tip = self.yolo_blocks[i](block)
            yolo_feats.append(tip)

763 764 765 766
            if for_mot:
                # add embedding features output
                emb_feats.append(route)

K
Kaipeng Deng 已提交
767 768 769 770 771
            if i < self.num_blocks - 1:
                route = self.routes[i](route)
                route = F.interpolate(
                    route, scale_factor=2., data_format=self.data_format)

772 773 774 775
        if for_mot:
            return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats}
        else:
            return yolo_feats
K
Kaipeng Deng 已提交
776 777 778 779 780 781 782 783

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]
W
wangxinxin08 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936


@register
@serializable
class PPYOLOPAN(nn.Layer):
    __shared__ = ['norm_type', 'data_format']

    def __init__(self,
                 in_channels=[512, 1024, 2048],
                 norm_type='bn',
                 data_format='NCHW',
                 act='mish',
                 conv_block_num=3,
                 drop_block=False,
                 block_size=3,
                 keep_prob=0.9,
                 spp=False):
        """
        PPYOLOPAN layer with SPP, DropBlock and CSP connection.

        Args:
            in_channels (list): input channels for fpn
            norm_type (str): batch norm type, default bn
            data_format (str): data format, NCHW or NHWC
            act (str): activation function, default mish
            conv_block_num (int): conv block num of each pan block
            drop_block (bool): whether use DropBlock or not
            block_size (int): block size of DropBlock
            keep_prob (float): keep probability of DropBlock
            spp (bool): whether use spp or not

        """
        super(PPYOLOPAN, self).__init__()
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels
        self.num_blocks = len(in_channels)
        # parse kwargs
        self.drop_block = drop_block
        self.block_size = block_size
        self.keep_prob = keep_prob
        self.spp = spp
        self.conv_block_num = conv_block_num
        self.data_format = data_format
        if self.drop_block:
            dropblock_cfg = [[
                'dropblock', DropBlock, [self.block_size, self.keep_prob],
                dict()
            ]]
        else:
            dropblock_cfg = []

        # fpn
        self.fpn_blocks = []
        self.fpn_routes = []
        fpn_channels = []
        for i, ch_in in enumerate(self.in_channels[::-1]):
            if i > 0:
                ch_in += 512 // (2**(i - 1))
            channel = 512 // (2**i)
            base_cfg = []
            for j in range(self.conv_block_num):
                base_cfg += [
                    # name, layer, args
                    [
                        '{}.0'.format(j), ConvBNLayer, [channel, channel, 1],
                        dict(
                            padding=0, act=act, norm_type=norm_type)
                    ],
                    [
                        '{}.1'.format(j), ConvBNLayer, [channel, channel, 3],
                        dict(
                            padding=1, act=act, norm_type=norm_type)
                    ]
                ]

            if i == 0 and self.spp:
                base_cfg[3] = [
                    'spp', SPP, [channel * 4, channel, 1], dict(
                        pool_size=[5, 9, 13], act=act, norm_type=norm_type)
                ]

            cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:]
            name = 'fpn.{}'.format(i)
            fpn_block = self.add_sublayer(
                name,
                PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name,
                                  data_format))
            self.fpn_blocks.append(fpn_block)
            fpn_channels.append(channel * 2)
            if i < self.num_blocks - 1:
                name = 'fpn_transition.{}'.format(i)
                route = self.add_sublayer(
                    name,
                    ConvBNLayer(
                        ch_in=channel * 2,
                        ch_out=channel,
                        filter_size=1,
                        stride=1,
                        padding=0,
                        act=act,
                        norm_type=norm_type,
                        data_format=data_format,
                        name=name))
                self.fpn_routes.append(route)
        # pan
        self.pan_blocks = []
        self.pan_routes = []
        self._out_channels = [512 // (2**(self.num_blocks - 2)), ]
        for i in reversed(range(self.num_blocks - 1)):
            name = 'pan_transition.{}'.format(i)
            route = self.add_sublayer(
                name,
                ConvBNLayer(
                    ch_in=fpn_channels[i + 1],
                    ch_out=fpn_channels[i + 1],
                    filter_size=3,
                    stride=2,
                    padding=1,
                    act=act,
                    norm_type=norm_type,
                    data_format=data_format,
                    name=name))
            self.pan_routes = [route, ] + self.pan_routes
            base_cfg = []
            ch_in = fpn_channels[i] + fpn_channels[i + 1]
            channel = 512 // (2**i)
            for j in range(self.conv_block_num):
                base_cfg += [
                    # name, layer, args
                    [
                        '{}.0'.format(j), ConvBNLayer, [channel, channel, 1],
                        dict(
                            padding=0, act=act, norm_type=norm_type)
                    ],
                    [
                        '{}.1'.format(j), ConvBNLayer, [channel, channel, 3],
                        dict(
                            padding=1, act=act, norm_type=norm_type)
                    ]
                ]

            cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:]
            name = 'pan.{}'.format(i)
            pan_block = self.add_sublayer(
                name,
                PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name,
                                  data_format))

            self.pan_blocks = [pan_block, ] + self.pan_blocks
            self._out_channels.append(channel * 2)

        self._out_channels = self._out_channels[::-1]

937
    def forward(self, blocks, for_mot=False):
W
wangxinxin08 已提交
938 939 940
        assert len(blocks) == self.num_blocks
        blocks = blocks[::-1]
        fpn_feats = []
941 942 943 944 945

        # add embedding features output for multi-object tracking model
        if for_mot:
            emb_feats = []

W
wangxinxin08 已提交
946 947 948 949 950 951 952 953 954
        for i, block in enumerate(blocks):
            if i > 0:
                if self.data_format == 'NCHW':
                    block = paddle.concat([route, block], axis=1)
                else:
                    block = paddle.concat([route, block], axis=-1)
            route, tip = self.fpn_blocks[i](block)
            fpn_feats.append(tip)

955 956 957 958
            if for_mot:
                # add embedding features output
                emb_feats.append(route)

W
wangxinxin08 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
            if i < self.num_blocks - 1:
                route = self.fpn_routes[i](route)
                route = F.interpolate(
                    route, scale_factor=2., data_format=self.data_format)

        pan_feats = [fpn_feats[-1], ]
        route = fpn_feats[self.num_blocks - 1]
        for i in reversed(range(self.num_blocks - 1)):
            block = fpn_feats[i]
            route = self.pan_routes[i](route)
            if self.data_format == 'NCHW':
                block = paddle.concat([route, block], axis=1)
            else:
                block = paddle.concat([route, block], axis=-1)

            route, tip = self.pan_blocks[i](block)
            pan_feats.append(tip)

977 978 979 980
        if for_mot:
            return {'yolo_feats': pan_feats[::-1], 'emb_feats': emb_feats}
        else:
            return pan_feats[::-1]
W
wangxinxin08 已提交
981 982 983 984 985 986 987 988

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]