quantization_pass.py 41.7 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
W
WangZhen 已提交
21 22
from .... import unique_name

23 24 25 26
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
    'TransformForMobilePass'
]
W
WangZhen 已提交
27

W
WangZhen 已提交
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
def _resolve_hazard(graph):
    def _to_node(nodes, node_name):
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n.node
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

    ordered_nodes = graph.topology_sort()
    var_nodes = dict()
    for node in ordered_nodes:
        if node.is_op() and node.op() is not None:
            for each_var_name in node.op().input_arg_names():
                if each_var_name not in var_nodes:
                    var_nodes[each_var_name] = [
                        _to_node(node.inputs, each_var_name)
                    ]
            for each_var_name in node.op().output_arg_names():
                if each_var_name not in var_nodes:
                    var_nodes[each_var_name] = [
                        _to_node(node.outputs, each_var_name)
                    ]
                else:
                    var_nodes[each_var_name].append(
                        _to_node(node.outputs, each_var_name))
    graph.graph.resolve_hazard(var_nodes)


58
class QuantizationTransformPass(object):
W
WangZhen 已提交
59
    def __init__(self,
60
                 scope=None,
61
                 place=None,
W
WangZhen 已提交
62 63 64 65
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
66 67
                 window_size=10000,
                 moving_rate=0.9):
W
WangZhen 已提交
68
        """
69
        Convert and rewrite the IrGraph according to weight and
W
WangZhen 已提交
70
        activation quantization type.
71

W
WangZhen 已提交
72
        Args:
73 74 75
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
            type, this pass will create some new parameters. The scope is used to
            initialize these new parameters.
76
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
77
            parameters described above.
W
WangZhen 已提交
78 79 80 81
            weight_bits (int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits (int): quantization bit number for activation.
            activation_quantize_type (str): quantization type for activation,
82 83 84 85 86
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
W
WangZhen 已提交
87
            weight_quantize_type (str): quantization type for weights,
88 89 90
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
W
WangZhen 已提交
91
            window_size (int): the window size for 'range_abs_max' quantization.
92

W
WangZhen 已提交
93 94
        Examples:
        .. code-block:: python
95 96 97 98
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
99
            from paddle.fluid.contrib.slim.graph import IrGraph
100 101
            from paddle.fluid import core

102
            graph = IrGraph(core.Graph(program.desc), for_test=False)
103
            place = fluid.CPUPlace()
104
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
105
            place)
106
            transform_pass.apply(graph)
W
WangZhen 已提交
107
        """
108
        self._scope = scope
109
        self._place = place
110 111
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
W
WangZhen 已提交
112

113 114 115 116 117
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
        assert activation_quantize_type != 'channel_wise_abs_max', "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
118 119 120
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be ",
121 122
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'.",
                str(activation_quantize_type))
W
WangZhen 已提交
123 124 125
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be ",
126
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' or 'moving_average_abs_max'.",
127
                str(weight_quantize_type))
W
WangZhen 已提交
128

129 130 131
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
132
        self._moving_rate = moving_rate
W
WangZhen 已提交
133

134
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
135
        self._conv_ops = ['conv2d', 'depthwise_conv2d']
136 137
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
138
        ]
139 140
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
141

142
    def apply(self, graph):
143 144 145 146 147 148 149 150
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        """
W
WangZhen 已提交
151
        assert isinstance(graph,
152
                          IrGraph), 'graph must be the instance of IrGraph.'
153 154
        sequential_execution = core.get_pass('sequential_execution_pass')
        sequential_execution.apply(graph.graph)
155
        self._is_test = graph.is_test()
W
WangZhen 已提交
156 157
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
158
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
W
WangZhen 已提交
159 160 161

        def _transform_forward(graph, op):
            for var_node in op.inputs:
162 163
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
164 165 166
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
W
WangZhen 已提交
167
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
168 169
                    else self._activation_bits
                    quant_type = self._weight_quantize_type if var_node.name() \
W
WangZhen 已提交
170
                        in persistable_vars else self._activation_quantize_type
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
                    if quant_type == 'channel_wise_abs_max':
                        assert var_node.name(
                        ) in persistable_vars, "'channel_wise_abs_max' can only be applied on weights."
                        if op.name() in self._conv_ops:
                            quant_var_node, scale_var_node = self._insert_channel_quant_op(
                                graph, var_node, quant_bits)
                            dequant_var_node = self._insert_channel_dequant_op(
                                graph, quant_var_node, [scale_var_node],
                                [quant_bits])
                        else:
                            quant_var_node, scale_var_node = self._insert_quant_op(
                                graph, var_node, quant_bits, 'abs_max')
                            dequant_var_node = self._insert_dequant_op(
                                graph, quant_var_node, scale_var_node,
                                quant_bits)
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
                            graph, var_node, quant_bits, quant_type)
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
W
WangZhen 已提交
191
                    dequantized_vars[var_node.name()] = dequant_var_node
192
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
193 194 195 196

        def _transform_backward(graph, op):
            no_dequanted_input_vars = True
            for var_node in op.inputs:
197 198
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
199 200
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
201
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
202 203 204 205
                    no_dequanted_input_vars = False
            if no_dequanted_input_vars:
                raise ValueError("There is no dequanted inputs for op %s." %
                                 (op.name()))
W
WangZhen 已提交
206

207
        if not self._is_test:
W
WangZhen 已提交
208
            self._create_global_step(graph)
209
        ops = graph.all_op_nodes()
W
WangZhen 已提交
210 211
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
212
        for op in ops:
213
            if op.name() in self._quantizable_ops:
W
WangZhen 已提交
214
                _transform_forward(graph, op)
W
WangZhen 已提交
215 216
        # The loop for renaming the inputs of backward op.
        for op in ops:
217
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
218
                _transform_backward(graph, op)
219
        _resolve_hazard(graph)
220
        return graph
W
WangZhen 已提交
221

W
WangZhen 已提交
222
    def _create_global_step(self, graph):
223 224
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
225
            counter_name = cpt.to_text('@STEP_COUNTER@')
226
            for node in graph.all_var_nodes():
W
WangZhen 已提交
227
                if node.name() == counter_name:
228 229
                    self._global_step = node
            if self._global_step is None:
230
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
231 232 233 234
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
235 236 237
                self._init_var_node(
                    global_step_in, np.zeros(
                        [1], dtype='int64'))
W
WangZhen 已提交
238 239
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
240
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
241 242
                increment_op = graph.create_op_node(
                    op_type='increment',
243 244 245 246 247
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
248 249
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
250 251 252
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
253

W
WangZhen 已提交
254 255 256 257 258 259 260
    def _insert_quant_op(self, graph, var_node, quant_bits, quant_type):
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
            return self._insert_quant_abs_max_op(graph, var_node, quant_bits)
        elif quant_type == 'range_abs_max':
W
WangZhen 已提交
261 262
            return self._insert_quant_range_abs_max_op(graph, var_node,
                                                       quant_bits)
263 264 265
        elif quant_type == 'moving_average_abs_max':
            return self._insert_quant_moving_average_abs_max_op(graph, var_node,
                                                                quant_bits)
W
WangZhen 已提交
266 267 268 269 270 271 272 273 274

    def _insert_quant_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
275 276 277
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
278 279
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
280
            var_type=var_node.type(),
281
            shape=[1],
282
            var_dtype=var_node.dtype())
W
WangZhen 已提交
283 284
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
285 286 287 288
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
289 290 291
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
292 293 294
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
295 296 297 298 299 300 301 302 303 304
        return quant_var_node, scale_var_node

    def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
305 306 307
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
308

309
        scale_in_node = graph.create_persistable_node(
W
WangZhen 已提交
310 311 312
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
313
            var_dtype=var_node.dtype())
314 315 316
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        self._init_var_node(scale_in_node, np.array([0.001], dtype=data_type))
W
WangZhen 已提交
317 318 319 320 321

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

322
        if not self._is_test:
W
WangZhen 已提交
323
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
324
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
325 326
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
327
                shape=[self._window_size],
328
                var_dtype=var_node.dtype())
329 330 331 332 333
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            self._init_var_node(
                scales_node, np.zeros(
                    [self._window_size], dtype=data_type))
334
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
335 336
            outputs['OutScales'] = scales_node
        attrs = {
337
            'window_size': self._window_size,
W
WangZhen 已提交
338
            'bit_length': quant_bits,
339 340
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
341 342 343 344 345 346 347
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

348 349 350 351
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
352

353 354 355
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
356 357 358

        return quant_var_node, scale_out_node

359 360 361 362 363 364 365 366 367 368 369 370 371 372
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node,
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
373 374 375
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        self._init_var_node(scale_in_node, np.array([0.001], dtype=data_type))
376 377 378 379 380 381 382 383 384 385

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
386 387 388
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            self._init_var_node(scale_in_node, np.ones([1], dtype=data_type))
389 390 391 392 393
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
394
            self._init_var_node(accum_in_node, np.ones([1], dtype=data_type))
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    def _insert_channel_quant_op(self, graph, var_node, quant_bits):
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=var_node.type(),
            shape=[var_node.shape()[0]],
            var_dtype=var_node.dtype())
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
461 462 463 464 465 466 467 468
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
469 470 471
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
472 473 474
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
475 476 477 478
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
479 480 481
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
482 483 484
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
485 486
        return dequant_var_node

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
                                   quant_bits):
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

514 515 516 517 518 519 520 521 522 523
    def _init_var_node(self, var_node, value):
        assert isinstance(
            value, np.ndarray), 'The type of value should be numpy array.'
        assert self._scope is not None, \
        'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
        assert self._place is not None, \
        'The place cannot be set None when activation_quantize_type equals to range_abs_max.'
        tensor = self._scope.var(var_node.name()).get_tensor()
        tensor.set(value, self._place)

W
WangZhen 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
538
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
539 540
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
541 542 543


class QuantizationFreezePass(object):
544 545 546 547 548 549 550 551 552 553 554 555
    """
    The freeze pass is used to adjust the quantize operator order, for example:
        1) `activation -> quant -> dequant -> conv2d` will be freezed into
        `activation -> quant -> conv2d -> dequant`
        2) `weight -> quant -> dequant -> conv2d` will be freezed into `weight -> conv2d`,
        and weight will be sacled offline.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
        weight_bits (int): quantization bit number for weights.
        activation_bits (int): quantization bit number for activation.
556
        weight_quantize_type (str): quantization type for weights, support 'abs_max' and 'channel_wise_abs_max'.
557 558 559 560
        The 'range_abs_max' usually is not used for weight, since weights are fixed once the
        model is well trained.
    """

W
WangZhen 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
                 weight_quantize_type='abs_max'):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
577
        self._conv_ops = ['conv2d', 'depthwise_conv2d']
W
WangZhen 已提交
578
        self._fake_quant_op_names = [
579
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
580 581 582 583 584
            'fake_quantize_moving_average_abs_max',
            'fake_channel_wise_quantize_abs_max'
        ]
        self._fake_dequant_op_names = [
            'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
W
WangZhen 已提交
585 586 587 588 589 590
        ]
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
        self._var_scale_map = collections.OrderedDict()

    def apply(self, graph):
591 592 593 594 595 596
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
        """
597 598
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
599 600 601
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
602
                input_arg_name = op_node.input('X')[0]
W
WangZhen 已提交
603 604 605 606
                if input_arg_name in persistable_vars:
                    if self._weight_quantize_type == 'abs_max':
                        param = self._load_var(input_arg_name)
                        scale_v = np.max(np.abs(param))
607 608 609 610 611 612 613 614
                    elif self._weight_quantize_type == 'channel_wise_abs_max':
                        param = self._load_var(input_arg_name)
                        if len(param.shape) == 4:  # conv2d or depthwise_conv2d
                            scale_v = []
                            for i in range(param.shape[0]):
                                scale_v.append(np.max(np.abs(param[i])))
                        else:
                            scale_v = np.max(np.abs(param))
W
WangZhen 已提交
615
                    else:
616 617
                        scale_v = self._load_var(
                            op_node.output('OutScale')[0])[0]
W
WangZhen 已提交
618 619 620 621 622
                    self._var_scale_map[input_arg_name] = scale_v
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
                    # quantize weight and restore
                    param_v = self._load_var(input_arg_name)
                    quantized_param_v = self._quant(param_v, scale_v,
W
WangZhen 已提交
623
                                                    self._weight_bits)
W
WangZhen 已提交
624
                    self._restore_var(input_arg_name, quantized_param_v)
625
                else:
626 627
                    scale_v = self._to_node(op_node.outputs,
                                            op_node.output('OutScale')[0])
628
                    self._var_scale_map[input_arg_name] = scale_v
W
WangZhen 已提交
629

630
        ops = graph.all_op_nodes()
W
WangZhen 已提交
631 632 633 634 635
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

636
        ops = graph.all_op_nodes()
W
WangZhen 已提交
637 638 639
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
640 641 642 643
                if self._weight_quantize_type == 'channel_wise_abs_max' and op_name in self._conv_ops:
                    self._insert_post_channel_dequant_op(graph, op_node)
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
644 645 646 647

        for op_node in ops:
            # insert dequant_op after fc/conv, need to rename inputs of the followed ops
            for var_node in op_node.inputs:
648 649 650
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
651 652 653 654
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
655
        return graph
W
WangZhen 已提交
656 657

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
658 659 660 661
        k = self._to_node(op_node.outputs, op_node.output('Out')[0])
        v = self._to_node(op_node.inputs, op_node.input('X')[0])
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
662
        else:
663 664
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
665
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
666

667 668 669 670
    def _insert_post_channel_dequant_op(self, graph, op_node):
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
671 672 673 674 675
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
676 677 678 679 680 681 682 683 684 685 686 687 688 689
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
            scale_v = self._var_scale_map[original_var_name]
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
                scale_var_node = self._var_scale_map[original_var_name]

690
        if len(op_node.output_arg_names()) != 1:
691 692 693
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

694 695
        output_var_node = self._to_node(op_node.outputs,
                                        op_node.output_arg_names()[0])
696 697 698 699 700
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
701 702 703
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        self._init_var_node(weight_scale_node, channel_scale.astype(data_type))
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
724
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
725 726
        return dequant_var_node

W
WangZhen 已提交
727
    def _insert_post_dequant_op(self, graph, op_node):
728
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
W
WangZhen 已提交
729
        for var_node in op_node.inputs:
W
WangZhen 已提交
730
            name = var_node.name()
731 732 733 734 735
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
736
                new_in.clear_outputs()
W
WangZhen 已提交
737 738
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
W
WangZhen 已提交
739
            scale_v = self._var_scale_map[original_var_name]
W
WangZhen 已提交
740 741 742 743 744 745 746 747
            if original_var_name in persistable_vars:
                param_range = (1 << (self._weight_bits - 1)) - 1
                act_range = (1 << (self._activation_bits - 1)) - 1
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
                max_range = param_range * act_range / scale_v
            else:
748
                assert isinstance(scale_v, IrNode)
W
WangZhen 已提交
749 750
                scale_var_node = self._var_scale_map[original_var_name]

751
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
752 753 754
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

755 756
        output_var_node = self._to_node(op_node.outputs,
                                        op_node.output_arg_names()[0])
W
WangZhen 已提交
757 758
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
759 760 761
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
762 763
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
764 765 766 767
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
768 769 770 771 772 773
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
774
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
775 776
        return dequant_var_node

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
    def _init_var_node(self, var_node, value):
        assert isinstance(
            value, np.ndarray), 'The type of value should be numpy array.'
        assert self._scope is not None, \
        'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
        assert self._place is not None, \
        'The place cannot be set None when activation_quantize_type equals to range_abs_max.'
        tensor = self._scope.var(var_node.name()).get_tensor()
        tensor.set(value, self._place)

    def _to_node(self, nodes, node_name):
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

W
WangZhen 已提交
795 796 797
    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

798 799 800
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
801 802 803

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
804
        ops = graph.all_op_nodes()
W
WangZhen 已提交
805 806 807 808 809 810
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

811 812 813 814 815 816
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
840
    def _is_float(self, v):
W
WangZhen 已提交
841 842 843
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

W
WangZhen 已提交
844
    def _quant(self, x, scale, num_bits):
845 846 847 848 849 850
        if isinstance(scale, list):
            for i, s in enumerate(scale):
                x[i] = np.round(x[i] / s * ((1 << (num_bits - 1)) - 1))
            return x
        else:
            return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
851 852 853


class ConvertToInt8Pass(object):
854 855 856 857 858 859 860 861 862
    """
    Convert the weights into int8_t type.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
        8bits weight tensors.
    """

863 864 865 866 867 868 869 870 871 872
    def __init__(self, scope, place):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']

    def apply(self, graph):
873 874 875 876 877 878 879
        """
        Convert weights' tpye of the graph. After that, the data type of the
        graph weigths is int8_t.

        Args:
            graph(IrGraph): the applied graph.
        """
880 881
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
        input_map = {}
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
902
        int8_var_node = graph.create_persistable_node(
903
            name=cpt.to_text(int8_var_node_name),
904 905
            var_type=var_node.type(),
            shape=var_node.shape(),
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
921
        ops = graph.all_op_nodes()
922 923 924 925 926 927
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

928 929 930 931 932 933
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
934 935 936 937
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
938 939 940 941
    """
    This pass is used to convert the freezed graph for paddle-mobile execution.
    """

942 943
    def __init__(self):
        self._fake_quant_op_names = [
944 945 946 947 948 949
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
            'fake_quantize_moving_average_abs_max',
            'fake_channel_wise_quantize_abs_max'
        ]
        self._fake_dequant_op_names = [
            'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
950 951 952
        ]

    def apply(self, graph):
953 954 955 956 957 958 959 960
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
        """
961
        ops = graph.all_op_nodes()
962 963 964
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
965
                op_node.set_type('quantize')
966 967 968 969 970 971 972
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
973
                op_node.set_type('dequantize')
974 975 976 977 978 979 980 981
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)

        return graph