json_results.py 4.9 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Q
qingqing01 已提交
14 15 16 17
import six
import numpy as np


G
Guanghua Yu 已提交
18
def get_det_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
Q
qingqing01 已提交
19 20 21 22 23 24
    det_res = []
    k = 0
    for i in range(len(bbox_nums)):
        cur_image_id = int(image_id[i][0])
        det_nums = bbox_nums[i]
        for j in range(det_nums):
G
Guanghua Yu 已提交
25
            dt = bboxes[k]
Q
qingqing01 已提交
26
            k = k + 1
G
Guanghua Yu 已提交
27 28 29 30
            num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
            if int(num_id) < 0:
                continue
            category_id = label_to_cat_id_map[int(num_id)]
W
wangxinxin08 已提交
31 32
            w = xmax - xmin + bias
            h = ymax - ymin + bias
Q
qingqing01 已提交
33 34 35 36 37 38
            bbox = [xmin, ymin, w, h]
            dt_res = {
                'image_id': cur_image_id,
                'category_id': category_id,
                'bbox': bbox,
                'score': score
C
cnn 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
            }
            det_res.append(dt_res)
    return det_res


def get_det_poly_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
    det_res = []
    k = 0
    for i in range(len(bbox_nums)):
        cur_image_id = int(image_id[i][0])
        det_nums = bbox_nums[i]
        for j in range(det_nums):
            dt = bboxes[k]
            k = k + 1
            num_id, score, x1, y1, x2, y2, x3, y3, x4, y4 = dt.tolist()
            if int(num_id) < 0:
                continue
56
            category_id = label_to_cat_id_map[int(num_id)]
C
cnn 已提交
57 58 59 60 61 62
            rbox = [x1, y1, x2, y2, x3, y3, x4, y4]
            dt_res = {
                'image_id': cur_image_id,
                'category_id': category_id,
                'bbox': rbox,
                'score': score
Q
qingqing01 已提交
63 64 65 66 67
            }
            det_res.append(dt_res)
    return det_res


G
Guanghua Yu 已提交
68
def get_seg_res(masks, bboxes, mask_nums, image_id, label_to_cat_id_map):
69
    import pycocotools.mask as mask_util
Q
qingqing01 已提交
70 71 72 73 74 75
    seg_res = []
    k = 0
    for i in range(len(mask_nums)):
        cur_image_id = int(image_id[i][0])
        det_nums = mask_nums[i]
        for j in range(det_nums):
G
Guanghua Yu 已提交
76 77 78
            mask = masks[k].astype(np.uint8)
            score = float(bboxes[k][1])
            label = int(bboxes[k][0])
Q
qingqing01 已提交
79
            k = k + 1
80 81
            if label == -1:
                continue
82 83 84 85
            cat_id = label_to_cat_id_map[label]
            rle = mask_util.encode(
                np.array(
                    mask[:, :, None], order="F", dtype="uint8"))[0]
Q
qingqing01 已提交
86
            if six.PY3:
87 88
                if 'counts' in rle:
                    rle['counts'] = rle['counts'].decode("utf8")
Q
qingqing01 已提交
89 90 91
            sg_res = {
                'image_id': cur_image_id,
                'category_id': cat_id,
92
                'segmentation': rle,
Q
qingqing01 已提交
93 94 95 96
                'score': score
            }
            seg_res.append(sg_res)
    return seg_res
G
Guanghua Yu 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111


def get_solov2_segm_res(results, image_id, num_id_to_cat_id_map):
    import pycocotools.mask as mask_util
    segm_res = []
    # for each batch
    segms = results['segm'].astype(np.uint8)
    clsid_labels = results['cate_label']
    clsid_scores = results['cate_score']
    lengths = segms.shape[0]
    im_id = int(image_id[0][0])
    if lengths == 0 or segms is None:
        return None
    # for each sample
    for i in range(lengths - 1):
112
        clsid = int(clsid_labels[i])
G
Guanghua Yu 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125
        catid = num_id_to_cat_id_map[clsid]
        score = float(clsid_scores[i])
        mask = segms[i]
        segm = mask_util.encode(np.array(mask[:, :, np.newaxis], order='F'))[0]
        segm['counts'] = segm['counts'].decode('utf8')
        coco_res = {
            'image_id': im_id,
            'category_id': catid,
            'segmentation': segm,
            'score': score
        }
        segm_res.append(coco_res)
    return segm_res
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149


def get_keypoint_res(results, im_id):
    anns = []
    preds = results['keypoint']
    for idx in range(im_id.shape[0]):
        image_id = im_id[idx].item()
        kpts, scores = preds[idx]
        for kpt, score in zip(kpts, scores):
            kpt = kpt.flatten()
            ann = {
                'image_id': image_id,
                'category_id': 1,  # XXX hard code
                'keypoints': kpt.tolist(),
                'score': float(score)
            }
            x = kpt[0::3]
            y = kpt[1::3]
            x0, x1, y0, y1 = np.min(x).item(), np.max(x).item(), np.min(y).item(
            ), np.max(y).item()
            ann['area'] = (x1 - x0) * (y1 - y0)
            ann['bbox'] = [x0, y0, x1 - x0, y1 - y0]
            anns.append(ann)
    return anns