utils.py 4.8 KB
Newer Older
W
wangxinxin08 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This code is based on: https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

import paddle
import paddle.nn.functional as F

IMAGE_MEAN = paddle.to_tensor([0.48145466, 0.4578275, 0.40821073])
IMAGE_STD = paddle.to_tensor([0.26862954, 0.26130258, 0.27577711])


def normalize_image(img):
    return (img - IMAGE_MEAN) / IMAGE_STD


def unnormalize_image(x):
    return x * IMAGE_STD + IMAGE_MEAN


def resize_posemb(posemb, target_size):
    """Resizes position embeddings to new resolution."""
    if target_size == posemb.shape[1]:
        return posemb

    gs_old = int(np.sqrt(posemb.shape[1]))
    gs_new = int(np.sqrt(target_size))

    posemb_tok = None
    if gs_old**2 == posemb.shape[1]:
        posemb_grid = posemb
    elif gs_old**2 == posemb.shape[1] - 1:
        posemb_tok, posemb_grid = posemb[:, :1], posemb[:, 1:]
    else:
        raise ValueError(
            'Posemb shape must be a perfect square (maybe with CLS token), but '
            f'got posemb of shape {posemb.shape}.')

    posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).transpose(
        [0, 3, 1, 2])
    posemb_grid = F.interpolate(
        posemb_grid, size=gs_new, mode='bilinear', align_corners=False)
    posemb_grid = posemb_grid.transpose([0, 2, 3, 1]).reshape(1, gs_new[0] *
                                                              gs_new[1], -1)
    if posemb_tok is not None:
        posemb = paddle.concat([posemb_tok, posemb], axis=1)

    return posemb


def seq2img(original_img, features):
    """Reshapes 1D sequence to 2D image features."""
    if original_img.shape[2] == original_img.shape[3]:
        h = w = int(np.sqrt(features.shape[2]))
    else:
        stride = np.ceil(
            np.sqrt(original_img.shape[2] * original_img.shape[3] /
                    features.shape[2]))
        h = np.ceil(original_img.shape[2] / stride)
        w = np.ceil(original_img.shape[3] / stride)
    return features.reshape([features.shape[0], -1, int(h), int(w)])


def normalized_grid_corner_coordinates(feature_map, padding_mask):
    """Computes normalized xy corner coords from feature_map or padding_mask."""
    # Note 1: it computes not the centers of grid patches, but the patch corner
    # coordinates (for a grid patch from 0 to 0.1, it returns 0.1 not 0.05).
    # Note 2: behavior is quite different for feature_map and padding_mask inputs.
    if padding_mask is None:
        assert len(feature_map.shape) == 4  # [B, C, H, W]
        _, _, h, w = paddle.shape(feature_map)
        shift_x = paddle.arange(1, w + 1)
        shift_y = paddle.arange(1, h + 1)
        shift_y, shift_x = paddle.meshgrid(shift_y, shift_x)
        # [H, W, 2]
        xy = paddle.cast(
            paddle.stack(
                [shift_x, shift_y], axis=-1), dtype='float32')
        xy = xy / paddle.concat([w, h])
    else:
        assert len(padding_mask.shape) == 3  # [B, H, W]
        padding_mask = padding_mask.cast(paddle.float32)
        y = paddle.cumsum(padding_mask, axis=1)
        x = paddle.cumsum(padding_mask, axis=2)
        # [B, H, W, 2]
        xy = paddle.stack(
            [x / (x[:, :, -1:] + 1e-6), y / (y[:, -1:] + 1e-6)], axis=-1)

    return xy.reshape(xy.shape[:-3] + [-1, 2])


def compute_box_bias(feature_map, padding_mask, kind='both'):
    """Computes spatial bias for grid."""
    # The box center is biased to its position on the feature grid:
    xy = normalized_grid_corner_coordinates(feature_map, padding_mask)
    xy = paddle.clip(xy, 0.0, 1.0)

    if kind in ['both', 'location']:
        # Unnormalize xy (i.e., apply logit function/sigmoid^-1).
        xy_bias = logit(xy)
    else:
        xy_bias = paddle.zeros_like(xy)

    if kind in ['both', 'size']:
        # The box size is biased to the patch size:
        wh_bias = logit(paddle.full_like(xy_bias, 1.0 / feature_map.shape[-1]))
    else:
        wh_bias = paddle.zeros_like(xy_bias)

    return paddle.concat([xy_bias, wh_bias], axis=-1)


def logit(x, eps=1e-4):
    """Logit (inverse sigmoid) function (https://en.wikipedia.org/wiki/Logit)."""
    return paddle.log(x + eps) - paddle.log1p(-x + eps)