cascade_head.py 10.3 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
M
Manuel Garcia 已提交
18
from paddle.nn.initializer import Normal
W
wangguanzhong 已提交
19

M
Manuel Garcia 已提交
20
from ppdet.core.workspace import register
F
Feng Ni 已提交
21
from .bbox_head import BBoxHead, TwoFCHead, XConvNormHead
W
wangguanzhong 已提交
22 23
from .roi_extractor import RoIAlign
from ..shape_spec import ShapeSpec
M
Manuel Garcia 已提交
24
from ..bbox_utils import delta2bbox, clip_bbox, nonempty_bbox
W
wangguanzhong 已提交
25

F
Feng Ni 已提交
26 27
__all__ = ['CascadeTwoFCHead', 'CascadeXConvNormHead', 'CascadeHead']

W
wangguanzhong 已提交
28 29 30 31

@register
class CascadeTwoFCHead(nn.Layer):
    __shared__ = ['num_cascade_stage']
W
wangguanzhong 已提交
32 33 34 35 36 37 38 39 40
    """
    Cascade RCNN bbox head  with Two fc layers to extract feature

    Args:
        in_channel (int): Input channel which can be derived by from_config
        out_channel (int): Output channel
        resolution (int): Resolution of input feature map, default 7
        num_cascade_stage (int): The number of cascade stage, default 3
    """
W
wangguanzhong 已提交
41 42

    def __init__(self,
W
wangguanzhong 已提交
43 44
                 in_channel=256,
                 out_channel=1024,
W
wangguanzhong 已提交
45 46 47 48
                 resolution=7,
                 num_cascade_stage=3):
        super(CascadeTwoFCHead, self).__init__()

W
wangguanzhong 已提交
49 50
        self.in_channel = in_channel
        self.out_channel = out_channel
W
wangguanzhong 已提交
51 52 53 54

        self.head_list = []
        for stage in range(num_cascade_stage):
            head_per_stage = self.add_sublayer(
W
wangguanzhong 已提交
55
                str(stage), TwoFCHead(in_channel, out_channel, resolution))
W
wangguanzhong 已提交
56 57 58 59 60 61
            self.head_list.append(head_per_stage)

    @classmethod
    def from_config(cls, cfg, input_shape):
        s = input_shape
        s = s[0] if isinstance(s, (list, tuple)) else s
W
wangguanzhong 已提交
62
        return {'in_channel': s.channels}
F
Feng Ni 已提交
63 64 65

    @property
    def out_shape(self):
W
wangguanzhong 已提交
66
        return [ShapeSpec(channels=self.out_channel, )]
F
Feng Ni 已提交
67 68 69 70 71 72 73 74 75

    def forward(self, rois_feat, stage=0):
        out = self.head_list[stage](rois_feat)
        return out


@register
class CascadeXConvNormHead(nn.Layer):
    __shared__ = ['norm_type', 'freeze_norm', 'num_cascade_stage']
W
wangguanzhong 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89
    """
    Cascade RCNN bbox head with serveral convolution layers

    Args:
        in_channel (int): Input channels which can be derived by from_config
        num_convs (int): The number of conv layers
        conv_dim (int): The number of channels for the conv layers
        out_channel (int): Output channels
        resolution (int): Resolution of input feature map
        norm_type (string): Norm type, bn, gn, sync_bn are available, 
            default `gn`
        freeze_norm (bool): Whether to freeze the norm
        num_cascade_stage (int): The number of cascade stage, default 3
    """
F
Feng Ni 已提交
90 91

    def __init__(self,
W
wangguanzhong 已提交
92
                 in_channel=256,
F
Feng Ni 已提交
93 94
                 num_convs=4,
                 conv_dim=256,
W
wangguanzhong 已提交
95
                 out_channel=1024,
F
Feng Ni 已提交
96 97 98 99 100
                 resolution=7,
                 norm_type='gn',
                 freeze_norm=False,
                 num_cascade_stage=3):
        super(CascadeXConvNormHead, self).__init__()
W
wangguanzhong 已提交
101 102
        self.in_channel = in_channel
        self.out_channel = out_channel
F
Feng Ni 已提交
103 104 105 106 107 108

        self.head_list = []
        for stage in range(num_cascade_stage):
            head_per_stage = self.add_sublayer(
                str(stage),
                XConvNormHead(
W
wangguanzhong 已提交
109
                    in_channel,
F
Feng Ni 已提交
110 111
                    num_convs,
                    conv_dim,
W
wangguanzhong 已提交
112
                    out_channel,
F
Feng Ni 已提交
113 114 115 116 117 118 119 120 121 122
                    resolution,
                    norm_type,
                    freeze_norm,
                    stage_name='stage{}_'.format(stage)))
            self.head_list.append(head_per_stage)

    @classmethod
    def from_config(cls, cfg, input_shape):
        s = input_shape
        s = s[0] if isinstance(s, (list, tuple)) else s
W
wangguanzhong 已提交
123
        return {'in_channel': s.channels}
W
wangguanzhong 已提交
124 125 126

    @property
    def out_shape(self):
W
wangguanzhong 已提交
127
        return [ShapeSpec(channels=self.out_channel, )]
W
wangguanzhong 已提交
128 129 130 131 132 133 134 135 136

    def forward(self, rois_feat, stage=0):
        out = self.head_list[stage](rois_feat)
        return out


@register
class CascadeHead(BBoxHead):
    __shared__ = ['num_classes', 'num_cascade_stages']
137
    __inject__ = ['bbox_assigner', 'bbox_loss']
W
wangguanzhong 已提交
138
    """
W
wangguanzhong 已提交
139 140 141 142 143 144 145 146 147 148 149 150
    Cascade RCNN bbox head

    Args:
        head (nn.Layer): Extract feature in bbox head
        in_channel (int): Input channel after RoI extractor
        roi_extractor (object): The module of RoI Extractor
        bbox_assigner (object): The module of Box Assigner, label and sample the 
            box.
        num_classes (int): The number of classes
        bbox_weight (List[List[float]]): The weight to get the decode box and the 
            length of weight is the number of cascade stage
        num_cascade_stages (int): THe number of stage to refine the box
W
wangguanzhong 已提交
151 152 153 154 155 156 157 158 159 160
    """

    def __init__(self,
                 head,
                 in_channel,
                 roi_extractor=RoIAlign().__dict__,
                 bbox_assigner='BboxAssigner',
                 num_classes=80,
                 bbox_weight=[[10., 10., 5., 5.], [20.0, 20.0, 10.0, 10.0],
                              [30.0, 30.0, 15.0, 15.0]],
161 162
                 num_cascade_stages=3,
                 bbox_loss=None):
W
wangguanzhong 已提交
163 164 165 166 167 168 169 170 171 172
        nn.Layer.__init__(self, )
        self.head = head
        self.roi_extractor = roi_extractor
        if isinstance(roi_extractor, dict):
            self.roi_extractor = RoIAlign(**roi_extractor)
        self.bbox_assigner = bbox_assigner

        self.num_classes = num_classes
        self.bbox_weight = bbox_weight
        self.num_cascade_stages = num_cascade_stages
173
        self.bbox_loss = bbox_loss
W
wangguanzhong 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

        self.bbox_score_list = []
        self.bbox_delta_list = []
        for i in range(num_cascade_stages):
            score_name = 'bbox_score_stage{}'.format(i)
            delta_name = 'bbox_delta_stage{}'.format(i)
            bbox_score = self.add_sublayer(
                score_name,
                nn.Linear(
                    in_channel,
                    self.num_classes + 1,
                    weight_attr=paddle.ParamAttr(initializer=Normal(
                        mean=0.0, std=0.01))))

            bbox_delta = self.add_sublayer(
                delta_name,
                nn.Linear(
                    in_channel,
                    4,
                    weight_attr=paddle.ParamAttr(initializer=Normal(
                        mean=0.0, std=0.001))))
            self.bbox_score_list.append(bbox_score)
            self.bbox_delta_list.append(bbox_delta)
        self.assigned_label = None
        self.assigned_rois = None

    def forward(self, body_feats=None, rois=None, rois_num=None, inputs=None):
        """
        body_feats (list[Tensor]): Feature maps from backbone
        rois (Tensor): RoIs generated from RPN module
        rois_num (Tensor): The number of RoIs in each image
        inputs (dict{Tensor}): The ground-truth of image
        """
        targets = []
        if self.training:
            rois, rois_num, targets = self.bbox_assigner(rois, rois_num, inputs)
            targets_list = [targets]
            self.assigned_rois = (rois, rois_num)
            self.assigned_targets = targets

        pred_bbox = None
        head_out_list = []
        for i in range(self.num_cascade_stages):
            if i > 0:
                rois, rois_num = self._get_rois_from_boxes(pred_bbox,
                                                           inputs['im_shape'])
                if self.training:
                    rois, rois_num, targets = self.bbox_assigner(
                        rois, rois_num, inputs, i, is_cascade=True)
W
wangguanzhong 已提交
223
                    targets_list.append(targets)
W
wangguanzhong 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

            rois_feat = self.roi_extractor(body_feats, rois, rois_num)
            bbox_feat = self.head(rois_feat, i)
            scores = self.bbox_score_list[i](bbox_feat)
            deltas = self.bbox_delta_list[i](bbox_feat)
            head_out_list.append([scores, deltas, rois])
            pred_bbox = self._get_pred_bbox(deltas, rois, self.bbox_weight[i])

        if self.training:
            loss = {}
            for stage, value in enumerate(zip(head_out_list, targets_list)):
                (scores, deltas, rois), targets = value
                loss_stage = self.get_loss(scores, deltas, targets, rois,
                                           self.bbox_weight[stage])
                for k, v in loss_stage.items():
                    loss[k + "_stage{}".format(
                        stage)] = v / self.num_cascade_stages

            return loss, bbox_feat
        else:
            scores, deltas, self.refined_rois = self.get_prediction(
                head_out_list)
            return (deltas, scores), self.head

    def _get_rois_from_boxes(self, boxes, im_shape):
        rois = []
        for i, boxes_per_image in enumerate(boxes):
            clip_box = clip_bbox(boxes_per_image, im_shape[i])
            if self.training:
                keep = nonempty_bbox(clip_box)
254 255
                if keep.shape[0] == 0:
                    keep = paddle.zeros([1], dtype='int32')
W
wangguanzhong 已提交
256 257 258 259 260 261 262 263 264
                clip_box = paddle.gather(clip_box, keep)
            rois.append(clip_box)
        rois_num = paddle.concat([paddle.shape(r)[0] for r in rois])
        return rois, rois_num

    def _get_pred_bbox(self, deltas, proposals, weights):
        pred_proposals = paddle.concat(proposals) if len(
            proposals) > 1 else proposals[0]
        pred_bbox = delta2bbox(deltas, pred_proposals, weights)
265
        pred_bbox = paddle.reshape(pred_bbox, [-1, deltas.shape[-1]])
C
cnn 已提交
266 267 268
        num_prop = []
        for p in proposals:
            num_prop.append(p.shape[0])
W
wangguanzhong 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        return pred_bbox.split(num_prop)

    def get_prediction(self, head_out_list):
        """
        head_out_list(List[Tensor]): scores, deltas, rois
        """
        pred_list = []
        scores_list = [F.softmax(head[0]) for head in head_out_list]
        scores = paddle.add_n(scores_list) / self.num_cascade_stages
        # Get deltas and rois from the last stage
        _, deltas, rois = head_out_list[-1]
        return scores, deltas, rois

    def get_refined_rois(self, ):
        return self.refined_rois