benchmark.cc 11.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <iostream>
T
tensor-tang 已提交
16
#include <random>
T
tensor-tang 已提交
17 18 19 20 21
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/kernels.h"
22
#include "paddle/fluid/platform/device_tracer.h"
T
tensor-tang 已提交
23 24
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/port.h"
T
tensor-tang 已提交
25
#include "paddle/fluid/platform/variant.h"  // for UNUSED
T
tensor-tang 已提交
26 27 28 29

DEFINE_int32(burning, 10, "Burning times.");
DEFINE_int32(repeat, 3000, "Repeat times.");
DEFINE_int32(max_size, 1000, "The Max size would be tested.");
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
DEFINE_string(filter, "", "The Benchmark name would be run.");

class BenchJITKernel {
 public:
  BenchJITKernel() = default;
  virtual ~BenchJITKernel() = default;
  virtual void Run() = 0;
  virtual const char* Name() = 0;
  virtual const char* Dtype() = 0;
  virtual const char* Place() = 0;
};

static std::vector<BenchJITKernel*> g_all_benchmarks;

BenchJITKernel* InsertBenchmark(BenchJITKernel* b) {
  g_all_benchmarks.push_back(b);
  return b;
}

#define BENCH_JITKERNEL(name, dtype, place)                                    \
  class BenchJITKernel_##name##_##dtype##_##place##_ : public BenchJITKernel { \
   public:                                                                     \
    const char* Name() override { return #name; }                              \
    const char* Dtype() override { return #dtype; }                            \
    const char* Place() override { return #place; }                            \
    void Run() override;                                                       \
  };                                                                           \
T
tensor-tang 已提交
57
  static auto inserted_##name##_##dtype##_##place##_ UNUSED =                  \
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
      InsertBenchmark(new BenchJITKernel_##name##_##dtype##_##place##_());     \
  void BenchJITKernel_##name##_##dtype##_##place##_::Run()

#define BENCH_FP32_CPU(name) BENCH_JITKERNEL(name, FP32, CPU)

void RUN_ALL_BENCHMARK() {
  for (auto p : g_all_benchmarks) {
    if (!FLAGS_filter.empty() && FLAGS_filter != p->Name()) {
      continue;
    }
    LOG(INFO) << "Benchmark " << p->Name() << "." << p->Dtype() << "."
              << p->Place();
    p->Run();
  }
}
T
tensor-tang 已提交
73 74 75

template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
76 77
               const T upper = static_cast<T>(20.f), unsigned int seed = 100) {
  std::mt19937 rng(seed);
T
tensor-tang 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

std::vector<int> TestSizes() {
  std::vector<int> s;
  for (int i = 1; i <= FLAGS_max_size; ++i) {
    s.push_back(i);
  }
  return s;
}

T
tensor-tang 已提交
92 93 94 95 96 97 98
template <typename KernelTuples, typename... Args>
struct BenchFunc {
  // return this function avg time
  double operator()(const typename KernelTuples::func_type tgt, Args... args) {
    for (int i = 0; i < FLAGS_burning; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
99
    auto start = paddle::platform::PosixInNsec() * 1e-3;
T
tensor-tang 已提交
100 101 102
    for (int i = 0; i < FLAGS_repeat; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
103
    auto end = paddle::platform::PosixInNsec() * 1e-3;
104
    return static_cast<double>(end - start) / FLAGS_repeat;
T
tensor-tang 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  }
};

namespace jit = paddle::operators::jit;

template <jit::KernelType KT, typename KernelTuples, typename PlaceType,
          typename... Args>
void BenchAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
  BenchFunc<KernelTuples, Args...> benchmark;
  std::vector<std::pair<std::string, double>> infos;
  // test refer
  auto refer = jit::GetRefer<KT, KernelTuples>();
  if (!refer) {
    LOG(FATAL) << "Refer can not be empty!";
  }
  infos.push_back(std::make_pair("Refer", benchmark(refer, args...)));

  // test jitcode
  auto jitcode = jit::GetJitCode<KT, KernelTuples, PlaceType>(attr);
  if (jitcode) {
    infos.push_back(std::make_pair("JitCode", benchmark(jitcode, args...)));
  }
  // test all impls in more
  jit::KernelKey kkey(KT, PlaceType());
  auto& pool = jit::KernelPool().Instance().AllKernels();
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
    auto& impls = iter->second;
    for (auto& impl : impls) {
T
tensor-tang 已提交
134
      auto i = dynamic_cast<const jit::KernelMore<KernelTuples>*>(impl.get());
T
tensor-tang 已提交
135 136
      if (i && i->UseMe(attr)) {
        auto more = i->GetFunc();
T
tensor-tang 已提交
137 138
        infos.push_back(
            std::make_pair(i->ImplType(), benchmark(more, args...)));
T
tensor-tang 已提交
139 140
      }
    }
T
tensor-tang 已提交
141
  }
T
tensor-tang 已提交
142 143 144 145
  // Test result from Get function
  auto tgt = jit::Get<KT, KernelTuples, PlaceType>(attr);
  if (!tgt) {
    LOG(FATAL) << "Target can not be empty!";
T
tensor-tang 已提交
146
  }
T
tensor-tang 已提交
147 148 149 150 151 152 153 154 155
  infos.push_back(std::make_pair("Target", benchmark(tgt, args...)));

  // print
  std::ostringstream loginfos;
  loginfos << "Kernel Type " << jit::to_string(KT) << ": " << attr << ": ";
  for (auto pair : infos) {
    loginfos << pair.first << " takes " << pair.second << " us; ";
  }
  LOG(INFO) << loginfos.str();
T
tensor-tang 已提交
156 157
}

158 159
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchXYZNKernel() {
T
tensor-tang 已提交
160 161 162 163
  for (int d : TestSizes()) {
    std::vector<T> x(d), y(d), z(d);
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());
T
tensor-tang 已提交
164 165
    BenchAllImpls<KT, jit::XYZNTuples<T>, PlaceType>(d, x.data(), y.data(),
                                                     z.data(), d);
T
tensor-tang 已提交
166 167
  }
}
168

169 170 171 172 173 174
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchAXYNKernel() {
  for (int d : TestSizes()) {
    const T a = static_cast<T>(3);
    std::vector<T> x(d), y(d);
    RandomVec<T>(d, x.data());
T
tensor-tang 已提交
175 176
    BenchAllImpls<KT, jit::AXYNTuples<T>, PlaceType>(d, &a, x.data(), y.data(),
                                                     d);
177 178 179 180 181 182 183 184
  }
}

template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchXYNKernel() {
  for (int d : TestSizes()) {
    std::vector<T> x(d), y(d);
    RandomVec<T>(d, x.data());
T
tensor-tang 已提交
185
    BenchAllImpls<KT, jit::XYNTuples<T>, PlaceType>(d, x.data(), y.data(), d);
186 187 188
  }
}

T
tensor-tang 已提交
189 190 191 192
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchLSTMKernel() {
  for (bool use_peephole : {true, false}) {
    for (int d : TestSizes()) {
T
tensor-tang 已提交
193
      const jit::lstm_attr_t attr(d, jit::kVSigmoid, jit::kVTanh, jit::kVTanh,
T
tensor-tang 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
                                  use_peephole);
      std::vector<T> x(4 * d), ct_1(d), ct(d), ht(d), wp(3 * d), checked(2 * d);
      RandomVec<T>(4 * d, x.data(), -2.f, 2.f);
      RandomVec<T>(3 * d, wp.data(), -2.f, 2.f);
      RandomVec<T>(d, ct_1.data(), -2.f, 2.f);
      const T* ct_1_data = ct_1.data();
      const T* wp_data = wp.data();
      T* x_data = x.data();
      T* checked_data = checked.data();
      T* ct_data = ct.data();
      T* ht_data = ht.data();
      jit::lstm_t step;
      step.gates = x_data;
      step.ct_1 = ct_1_data;
      step.ct = ct_data;
      step.ht = ht_data;
      if (use_peephole) {
        step.wp = wp_data;
        step.checked = checked_data;
      }
T
tensor-tang 已提交
214
      BenchAllImpls<KT, jit::LSTMTuples<T>, PlaceType>(attr, &step, &attr);
T
tensor-tang 已提交
215 216 217 218
    }
  }
}

219 220 221
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchGRUKernel() {
  for (int d : TestSizes()) {
T
tensor-tang 已提交
222
    const jit::gru_attr_t attr(d, jit::kVSigmoid, jit::kVTanh);
223 224 225 226 227 228 229 230 231 232
    std::vector<T> x(3 * d), ht_1(d), ht(d);
    RandomVec<T>(3 * d, x.data(), -2.f, 2.f);
    RandomVec<T>(d, ht_1.data(), -2.f, 2.f);
    const T* ht_1_data = ht_1.data();
    T* x_data = x.data();
    T* ht_data = ht.data();
    jit::gru_t step;
    step.gates = x_data;
    step.ht_1 = ht_1_data;
    step.ht = ht_data;
T
tensor-tang 已提交
233
    BenchAllImpls<KT, jit::GRUTuples<T>, PlaceType>(attr, &step, &attr);
234 235 236
  }
}

237 238
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchSeqPoolKernel() {
239 240
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
241
  for (auto type : pool_types) {
T
tensor-tang 已提交
242
    for (int w : TestSizes()) {
T
tensor-tang 已提交
243
      jit::seq_pool_attr_t attr(w, type);
T
tensor-tang 已提交
244
      for (int h : TestSizes()) {
T
tensor-tang 已提交
245
        attr.h = h;
246 247 248 249 250 251 252 253 254 255 256
        std::vector<T> x(h * w), y(w);
        RandomVec<T>(h * w, x.data(), -2.f, 2.f);
        const T* x_data = x.data();
        T* y_data = y.data();
        BenchAllImpls<KT, jit::SeqPoolTuples<T>, PlaceType>(attr, x_data,
                                                            y_data, &attr);
      }
    }
  }
}

T
tensor-tang 已提交
257 258 259
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchMatMulKernel() {
  for (int m : {1, 2, 3, 4}) {
260
    for (int n : TestSizes()) {
T
tensor-tang 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274
      for (int k : TestSizes()) {
        std::vector<T> a(m * k), b(k * n), c(m * n);
        RandomVec<T>(m * k, a.data(), -2.f, 2.f);
        RandomVec<T>(k * n, b.data(), -2.f, 2.f);
        const T* a_data = a.data();
        const T* b_data = b.data();
        T* c_data = c.data();
        BenchAllImpls<KT, jit::MatMulTuples<T>, PlaceType>(k, a_data, b_data,
                                                           c_data, m, n, k);
      }
    }
  }
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
using T = float;
using PlaceType = paddle::platform::CPUPlace;

// xyzn
BENCH_FP32_CPU(kVMul) { BenchXYZNKernel<jit::kVMul, T, PlaceType>(); }

BENCH_FP32_CPU(kVAdd) { BenchXYZNKernel<jit::kVAdd, T, PlaceType>(); }

BENCH_FP32_CPU(kVAddRelu) { BenchXYZNKernel<jit::kVAddRelu, T, PlaceType>(); }

BENCH_FP32_CPU(kVSub) { BenchXYZNKernel<jit::kVSub, T, PlaceType>(); }

// axyn
BENCH_FP32_CPU(kVScal) { BenchAXYNKernel<jit::kVScal, T, PlaceType>(); }

BENCH_FP32_CPU(kVAddBias) { BenchAXYNKernel<jit::kVAddBias, T, PlaceType>(); }

// xyn
BENCH_FP32_CPU(kVRelu) { BenchXYNKernel<jit::kVRelu, T, PlaceType>(); }

BENCH_FP32_CPU(kVIdentity) { BenchXYNKernel<jit::kVIdentity, T, PlaceType>(); }

BENCH_FP32_CPU(kVSquare) { BenchXYNKernel<jit::kVSquare, T, PlaceType>(); }

BENCH_FP32_CPU(kVExp) { BenchXYNKernel<jit::kVExp, T, PlaceType>(); }

BENCH_FP32_CPU(kVSigmoid) { BenchXYNKernel<jit::kVSigmoid, T, PlaceType>(); }

BENCH_FP32_CPU(kVTanh) { BenchXYNKernel<jit::kVTanh, T, PlaceType>(); }

// lstm and peephole
BENCH_FP32_CPU(kLSTMCtHt) { BenchLSTMKernel<jit::kLSTMCtHt, T, PlaceType>(); }

BENCH_FP32_CPU(kLSTMC1H1) { BenchLSTMKernel<jit::kLSTMC1H1, T, PlaceType>(); }

// gru functions
BENCH_FP32_CPU(kGRUH1) { BenchGRUKernel<jit::kGRUH1, T, PlaceType>(); }

BENCH_FP32_CPU(kGRUHtPart1) {
  BenchGRUKernel<jit::kGRUHtPart1, T, PlaceType>();
}

BENCH_FP32_CPU(kGRUHtPart2) {
  BenchGRUKernel<jit::kGRUHtPart2, T, PlaceType>();
}

// seq pool function
BENCH_FP32_CPU(kSeqPool) { BenchSeqPoolKernel<jit::kSeqPool, T, PlaceType>(); }

// matmul
BENCH_FP32_CPU(kMatMul) { BenchMatMulKernel<jit::kMatMul, T, PlaceType>(); }

327 328 329 330 331 332
// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
// Options:
//     --burning: the burning time before count
//     --repeat: the repeat times
//     --max_size: the max size would be tested
333
//     --filter: the bench name would be run
334 335 336 337 338
int main(int argc, char* argv[]) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  google::InitGoogleLogging(argv[0]);
  LOG(INFO) << "Burning " << FLAGS_burning << " times, Repeat " << FLAGS_repeat
            << " times.";
T
tensor-tang 已提交
339

340
  RUN_ALL_BENCHMARK();
341
}