test_CompareSparse.cpp 7.0 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <paddle/utils/PythonUtil.h>

#include "paddle/trainer/Trainer.h"

#include <gtest/gtest.h>
#include <paddle/pserver/ParameterServer2.h>

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

static const string& configFile1 =
              "trainer/tests/sample_trainer_config_qb_rnn.conf";

P_DECLARE_bool(use_gpu);
P_DECLARE_string(config);
P_DECLARE_int32(gpu_id);
P_DECLARE_int32(seed);
P_DECLARE_int32(num_passes);
P_DECLARE_int32(saving_period);

P_DECLARE_int32(num_gradient_servers);
P_DECLARE_int32(port);
P_DECLARE_bool(local);
P_DECLARE_bool(use_old_updater);
P_DECLARE_bool(parallel_nn);
P_DECLARE_string(config_args);
P_DEFINE_double(max_diff_ratio, 0.0f,
              "max diff ratio allowed for parameters value");

int gNumDevices = 0;

std::vector<ParameterPtr> trainerOnePassTest(const string& configFile,
                                             bool sparseUpdate,
                                             int trainerCount = 1,
                                             bool useGpu = false) {
  FLAGS_use_gpu = useGpu;
  FLAGS_config = configFile;
  FLAGS_trainer_count = trainerCount;
  FLAGS_config_args = sparseUpdate ? "sparse_update=1" : "sparse_update=0";

  LOG(INFO) << " useGpu=" << useGpu << " trainerCount=" << trainerCount
            << " configFile=" << configFile
            << " sparseUpdate=" << sparseUpdate;
  srand(FLAGS_seed);
  *ThreadLocalRand::getSeed() = FLAGS_seed;

  if (useGpu) {
    CHECK_LE(trainerCount, gNumDevices);
  }

  std::vector<std::shared_ptr<ParameterServer2>> pservers;
  if (!FLAGS_local) {
    int numPorts = FLAGS_ports_num + FLAGS_ports_num_for_sparse;
    pservers.resize(numPorts);

    for (int i = 0; i < numPorts; ++i) {
      pservers[i].reset(new ParameterServer2(std::string(), FLAGS_port + i));
      pservers[i]->init();
      pservers[i]->start();
    }
  }

  Trainer trainer;
  trainer.init(TrainerConfigHelper::createFromFlagConfig());
  trainer.train();
  return trainer.getGradientMachine()->getParameters();
}

std::vector<ParameterPtr>& getDenseParameters() {
  static std::vector<ParameterPtr> denseParameters;
  if (denseParameters.empty()) {
    // use dense training as base
    FLAGS_local = true;
    denseParameters = trainerOnePassTest(configFile1, false);
  }

  return denseParameters;
}

void checkBuffer(real* A, const char* desA, real* B, const char* desB,
                 size_t len, double maxDiffRatio) {
  double maxDiff = 0;
  double maxValue = 0;
  for (size_t i = 0; i < len; ++i) {
    double diff = fabs(A[i] - B[i]);
    maxValue = std::max<double>(maxValue, std::max(fabs(A[i]), fabs(B[i])));
    maxDiff = std::max(maxDiff, diff);
  }
  EXPECT_LE(maxDiff / maxValue, maxDiffRatio);
  LOG(INFO) << " maxDiff=" << maxDiff
            << " maxValue=" << maxValue
            << " maxDiff/maxValue=" << maxDiff / maxValue
            << "\n\n";
}

void compareValue(const vector<ParameterPtr>& parametersA,
                  const vector<ParameterPtr>& parametersB,
                  double maxDiffRatio = 0.0) {
  LOG(INFO) << "\n\n--------------------------------"
            << " Check Gradient Machine Parameters:"
            << " -------------------------------------\n";
  for (size_t i = 0; i < parametersA.size(); ++i) {
    ParameterPtr parameterA, parameterB;
    parameterA = parametersA[i];
    parameterB = parametersB[i];

    CpuVector paraA(parameterA->getSize());
    CpuVector paraB(parameterB->getSize());
    paraA.copyFrom(*parameterA->getBuf(PARAMETER_VALUE));
    paraB.copyFrom(*parameterB->getBuf(PARAMETER_VALUE));

    LOG(INFO) << "\n\n----------- PARAMETER_VALUE:  " << parameterA->getName()
              << " ; size : " << paraA.getSize() << " ------------";
    checkBuffer(paraA.getData(), "para_A", paraB.getData(), "para_B",
                paraA.getSize(), maxDiffRatio);
  }
}

TEST(compareSparse, cpu) {
  FLAGS_local = 1;  // disable remote sparse update in parameter config
  std::vector<ParameterPtr> parameters = trainerOnePassTest(configFile1, true);
  compareValue(getDenseParameters(), parameters);
}

TEST(compareSparse, remote_cpu) {
  FLAGS_local = 0;  // will enable remote sparse update
  FLAGS_ports_num_for_sparse = 5;
  std::vector<ParameterPtr> parameters = trainerOnePassTest(configFile1, true);
  compareValue(getDenseParameters(), parameters);
}

TEST(compareSparse, cpu10_local_vs_remote) {
  FLAGS_local = 1;  // disable remote sparse update in parameter config
  std::vector<ParameterPtr> localParameters =
      trainerOnePassTest(configFile1, true, 10);

  FLAGS_local = 0;  // will enable remote sparse update
  FLAGS_ports_num_for_sparse = 5;
  std::vector<ParameterPtr> remoteParameters =
      trainerOnePassTest(configFile1, true, 10);

  compareValue(localParameters, remoteParameters);
}

TEST(compareSparse, multiGradientMachine) {
  int numGpu;
#ifdef PADDLE_TYPE_DOUBLE
  double eps = 1e-8;
#else
  double eps = 1e-4;
#endif
  numGpu = hl_get_device_count();
  for (bool local : {false, true}) {
    FLAGS_local = local;
    FLAGS_ports_num_for_sparse = 5;
    for (bool useGpu : {false, true}) {
#ifdef PADDLE_ONLY_CPU
      if (useGpu) continue;
#endif
      FLAGS_parallel_nn = useGpu;
      LOG(INFO) << " local=" << local
                << " useGpu=" << useGpu;
      int trainerCount = useGpu ? numGpu : 10;
      std::vector<ParameterPtr> parameters =
          trainerOnePassTest(configFile1, true, trainerCount, useGpu);
      compareValue(getDenseParameters(), parameters, eps);
    }
  }
  FLAGS_parallel_nn = false;
}

TEST(compareSparse, NeuralNetwork) {
#ifdef PADDLE_TYPE_DOUBLE
  double eps = 1e-8;
#else
  double eps = 1e-4;
#endif
  for (bool local : {false, true}) {
    FLAGS_local = local;
    FLAGS_ports_num_for_sparse = 5;
    for (bool useGpu : {false, true}) {
#ifdef PADDLE_ONLY_CPU
      if (useGpu) continue;
#endif
      FLAGS_parallel_nn = useGpu;
      LOG(INFO) << " local=" << local
                << " useGpu=" << useGpu;
      int trainerCount = 1;
      std::vector<ParameterPtr> parameters =
          trainerOnePassTest(configFile1, true, trainerCount, useGpu);
      compareValue(getDenseParameters(), parameters, useGpu ? eps : 0);
    }
  }
  FLAGS_parallel_nn = false;
}

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  initPython(argc, argv);

  gNumDevices = hl_get_device_count();
  FLAGS_num_passes = 1;          // train one pass
  FLAGS_saving_period = 100000;  // do not save parameter

  return RUN_ALL_TESTS();
}