layer_helper.py 6.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3
import copy
import itertools

Y
Yu Yang 已提交
4 5
from framework import Variable, default_main_program, default_startup_program, \
    unique_name, dtype_is_floating
6
from paddle.v2.fluid.initializer import Constant, Xavier
Y
Yu Yang 已提交
7
from param_attr import ParamAttr
Y
Yu Yang 已提交
8

Y
Yu Yang 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22

class LayerHelper(object):
    def __init__(self, layer_type, **kwargs):
        self.kwargs = kwargs
        self.layer_type = layer_type
        name = self.kwargs.get('name', None)
        if name is None:
            self.kwargs['name'] = unique_name(self.layer_type)

    @property
    def name(self):
        return self.kwargs['name']

    @property
23 24
    def main_program(self):
        prog = self.kwargs.get('main_program', None)
Y
Yu Yang 已提交
25
        if prog is None:
Y
Yu Yang 已提交
26
            return default_main_program()
Y
Yu Yang 已提交
27 28 29
        else:
            return prog

Q
QI JUN 已提交
30
    @property
31 32
    def startup_program(self):
        prog = self.kwargs.get('startup_program', None)
Q
QI JUN 已提交
33
        if prog is None:
Y
Yu Yang 已提交
34
            return default_startup_program()
Q
QI JUN 已提交
35 36 37
        else:
            return prog

Y
Yu Yang 已提交
38
    def append_op(self, *args, **kwargs):
39
        return self.main_program.current_block().append_op(*args, **kwargs)
Y
Yu Yang 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

    def multiple_input(self, input_param_name='input'):
        inputs = self.kwargs.get(input_param_name, [])
        type_error = TypeError(
            "Input of {0} layer should be Variable or sequence of Variable".
            format(self.layer_type))
        if isinstance(inputs, Variable):
            inputs = [inputs]
        elif not isinstance(inputs, list) and not isinstance(inputs, tuple):
            raise type_error
        else:
            for each in inputs:
                if not isinstance(each, Variable):
                    raise type_error
        return inputs

    def input(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        if len(inputs) != 1:
            raise "{0} layer only takes one input".format(self.layer_type)
        return inputs[0]

    @property
    def param_attr(self):
Y
Yu Yang 已提交
64
        return ParamAttr.to_attr(self.kwargs.get('param_attr', None))
Y
Yu Yang 已提交
65

Q
QI JUN 已提交
66
    @property
Q
QI JUN 已提交
67
    def bias_attr(self):
Y
Yu Yang 已提交
68
        return ParamAttr.to_attr(self.kwargs.get('bias_attr', None))
Y
Yu Yang 已提交
69 70 71

    def multiple_param_attr(self, length):
        param_attr = self.param_attr
Y
Yu Yang 已提交
72
        if isinstance(param_attr, ParamAttr):
Y
Yu Yang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
            param_attr = [param_attr]

        if len(param_attr) != 1 and len(param_attr) != length:
            raise ValueError("parameter number mismatch")
        elif len(param_attr) == 1 and length != 1:
            tmp = [None] * length
            for i in xrange(length):
                tmp[i] = copy.deepcopy(param_attr[0])
            param_attr = tmp
        return param_attr

    def iter_inputs_and_params(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        param_attrs = self.multiple_param_attr(len(inputs))
        for ipt, param_attr in itertools.izip(inputs, param_attrs):
            yield ipt, param_attr

    def input_dtype(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        dtype = None
        for each in inputs:
            if dtype is None:
F
fengjiayi 已提交
95 96
                dtype = each.dtype
            elif dtype != each.dtype:
Y
Yu Yang 已提交
97 98 99
                raise ValueError("Data Type mismatch")
        return dtype

Y
Yu Yang 已提交
100 101 102 103 104 105
    def create_parameter(self,
                         attr,
                         shape,
                         dtype,
                         is_bias=False,
                         default_initializer=None):
106
        # Deepcopy the attr so that parameters can be shared in program
Y
Yu Yang 已提交
107 108 109 110 111 112 113 114
        assert isinstance(attr, ParamAttr)
        suffix = 'b' if is_bias else 'w'

        if default_initializer is None:
            if is_bias:
                attr.set_default_bias_initializer()
            else:
                attr.set_default_param_initializer()
115
        else:
Y
Yu Yang 已提交
116 117 118 119
            attr.set_default_initializer(default_initializer)
        if attr.name is None:
            attr.name = unique_name(".".join([self.name, suffix]))

120
        self.startup_program.global_block().create_parameter(
Y
Yu Yang 已提交
121
            dtype=dtype, shape=shape, **attr.to_kwargs(with_initializer=True))
122
        return self.main_program.global_block().create_parameter(
Y
Yu Yang 已提交
123
            dtype=dtype, shape=shape, **attr.to_kwargs())
Y
Yu Yang 已提交
124 125

    def create_tmp_variable(self, dtype):
126
        return self.main_program.current_block().create_var(
Q
QI JUN 已提交
127 128 129
            name=unique_name(".".join([self.name, 'tmp'])),
            dtype=dtype,
            persistable=False)
Y
Yu Yang 已提交
130

Y
Yu Yang 已提交
131
    def create_variable(self, *args, **kwargs):
132
        return self.main_program.current_block().create_var(*args, **kwargs)
Y
Yu Yang 已提交
133

Q
Qiao Longfei 已提交
134
    def create_global_variable(self, persistable=False, *args, **kwargs):
135
        return self.main_program.global_block().create_var(
Q
Qiao Longfei 已提交
136 137 138 139
            *args, persistable=persistable, **kwargs)

    def set_variable_initializer(self, var, initializer):
        assert isinstance(var, Variable)
140
        self.startup_program.global_block().create_var(
Q
Qiao Longfei 已提交
141 142
            name=var.name,
            type=var.type,
F
fengjiayi 已提交
143
            dtype=var.dtype,
Q
Qiao Longfei 已提交
144 145 146
            shape=var.shape,
            persistable=True,
            initializer=initializer)
Y
Yu Yang 已提交
147

Y
Yu Yang 已提交
148
    def append_bias_op(self, input_var, dim_start=1, dim_end=None):
149
        """
X
xuwei06 已提交
150
        Append bias operator and return its output. If the user does not set
151
        bias_attr, append_bias_op will return input_var
X
xuwei06 已提交
152

153 154 155 156
        :param input_var: the input variable. The len(input_var.shape) is
        larger or equal than 2.
        :bias_initializer: an instance of a subclass of Initializer used to
        initialize the bias
X
xuwei06 已提交
157 158
        :param dim_start:
        :param dim_end: the shape of the bias will be
X
xuwei06 已提交
159
        input_var.shape[dim_start:dim_end]. The bias is broadcasted to other
X
xuwei06 已提交
160
        dimensions and added to input_var to get the output
161
        """
X
xuwei06 已提交
162
        size = list(input_var.shape[dim_start:dim_end])
Q
QI JUN 已提交
163
        bias_attr = self.bias_attr
Y
Yu Yang 已提交
164 165
        if not bias_attr:
            return input_var
166

Y
Yu Yang 已提交
167
        b = self.create_parameter(
Y
Yu Yang 已提交
168
            attr=bias_attr, shape=size, dtype=input_var.dtype, is_bias=True)
F
fengjiayi 已提交
169
        tmp = self.create_tmp_variable(dtype=input_var.dtype)
Y
Yu Yang 已提交
170 171 172 173
        self.append_op(
            type='elementwise_add',
            inputs={'X': [input_var],
                    'Y': [b]},
X
xuwei06 已提交
174 175
            outputs={'Out': [tmp]},
            attrs={'axis': dim_start})
Y
Yu Yang 已提交
176 177 178 179 180 181 182 183
        return tmp

    def append_activation(self, input_var):
        act = self.kwargs.get('act', None)
        if act is None:
            return input_var
        if isinstance(act, basestring):
            act = {'type': act}
F
fengjiayi 已提交
184
        tmp = self.create_tmp_variable(dtype=input_var.dtype)
Y
Yu Yang 已提交
185 186 187 188 189 190 191
        act_type = act.pop('type')
        self.append_op(
            type=act_type,
            inputs={"X": [input_var]},
            outputs={"Y": [tmp]},
            attrs=act)
        return tmp
192 193 194

    def _get_default_initializer(self, dtype):
        if dtype is None or dtype_is_floating(dtype) is True:
195
            return Xavier()
196 197
        else:
            # For integer and boolean types, initialize with all zeros
198
            return Constant()