pybind.cc 54.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
40
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
41
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
44
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/platform/enforce.h"
46
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
49
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
50 51
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
52
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
53
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
54
#include "paddle/fluid/pybind/ir.h"
55 56
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
57
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
59

60
#include "paddle/fluid/string/to_string.h"
61

D
Dong Zhihong 已提交
62
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
63
#ifndef _WIN32
Y
Yi Wang 已提交
64
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
65
#endif
Y
Yi Wang 已提交
66 67
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
68 69
#endif

M
minqiyang 已提交
70 71
#include "pybind11/stl.h"

72 73 74 75
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
76 77 78
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

79
namespace paddle {
80
namespace pybind {
81
bool IsCompiledWithCUDA() {
82
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
83 84 85 86 87 88
  return false;
#else
  return true;
#endif
}

89 90 91 92 93 94 95 96
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

97 98 99 100 101 102 103 104
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

105
bool IsCompiledWithBrpc() {
106
#ifndef PADDLE_WITH_DISTRIBUTE
107 108
  return false;
#endif
109 110 111 112 113 114

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
115 116
}

Y
update  
Yancey1989 已提交
117
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
118
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
119 120 121 122 123 124
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
125 126 127 128 129
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

130
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
131 132 133
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
134
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
135
  m.doc() = "C++ core of PaddlePaddle";
136

137 138 139 140
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

141
  BindException(&m);
Y
Yu Yang 已提交
142

S
sneaxiy 已提交
143
  m.def(
S
sneaxiy 已提交
144
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
145 146 147 148
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
149 150 151
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

152 153 154 155 156 157 158
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
159
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
160 161 162 163 164 165 166 167
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
168
      .def("_run_backward",
X
Xin Pan 已提交
169
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
170
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
171
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
172
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
173
      .def("_grad_ivar",
M
minqiyang 已提交
174
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
175
           py::return_value_policy::reference)
M
minqiyang 已提交
176
      .def("_copy_to",
P
Paddle CI 已提交
177
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
178 179 180 181 182
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
183
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
184
      .def("_copy_to",
P
Paddle CI 已提交
185
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
186 187 188 189 190
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
191
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
192
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
193
           py::return_value_policy::reference)
194 195 196 197 198 199 200 201
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
      .def_property_readonly("dtype", &imperative::VarBase::DType)
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
202

203
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
204
      .def(py::init<const std::string &>())
205 206 207 208
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
209 210 211 212 213 214 215 216 217 218
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
219 220 221 222 223 224
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
225 226 227 228 229 230 231
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
232 233
          py::return_value_policy::reference);

X
Xin Pan 已提交
234
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
235
  layer.def(py::init<>())
X
Xin Pan 已提交
236 237 238
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
239
      });
X
Xin Pan 已提交
240

X
polish  
Xin Pan 已提交
241
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
242
      .def(py::init<>())
X
Xin Pan 已提交
243 244
      .def_static(
          "apply",
X
Xin Pan 已提交
245
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
246
              -> std::vector<imperative::VarBase *> {
247 248 249 250 251 252 253 254 255 256 257
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
258 259
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
260 261 262 263 264
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
265

266 267
  BindTracer(&m);

268 269 270
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
271
      .def("_get_dims",
272
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
273
      .def("_set_dims",
Q
qijun 已提交
274
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
275
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
276
           })
Y
yuyang18 已提交
277
      .def("_set_layout",
D
dzhwinter 已提交
278 279 280
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
281
      .def("_alloc_float",
D
dzhwinter 已提交
282
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
283
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
284
           })
Y
yuyang18 已提交
285
      .def("_alloc_float",
Y
Yu Yang 已提交
286
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
287
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
288
           })
Y
yuyang18 已提交
289
      .def("_alloc_int",
Y
Yu Yang 已提交
290
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
291
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
292
           })
Y
yuyang18 已提交
293
      .def("_alloc_int",
D
dzhwinter 已提交
294
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
295
             self.mutable_data<int>(place);
Q
qijun 已提交
296
           })
Y
yuyang18 已提交
297
      .def("_alloc_int",
C
chengduoZH 已提交
298 299 300
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
301
      .def("_alloc_float",
C
chengduoZH 已提交
302 303 304
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
305 306
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
307
      .def("set", PyCPUTensorSetFromArray<double>)
308
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
309
      .def("set", PyCPUTensorSetFromArray<bool>)
310
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
311
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
312
      .def("set", PyCPUTensorSetFromArray<int8_t>)
313
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
314 315
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
316
      .def("set", PyCUDATensorSetFromArray<double>)
317
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
318
      .def("set", PyCUDATensorSetFromArray<bool>)
319
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
320
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
321
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
322 323 324 325 326 327
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
328
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
329
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
330
#endif
331
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
332 333 334 335
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
336
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
337
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
338

X
Xin Pan 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
352
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
353
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
354
     columns, hence [5, 2].
X
Xin Pan 已提交
355 356 357

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
358 359
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
383 384
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
385 386 387 388 389 390 391 392 393 394 395 396 397 398
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
399
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
400 401 402 403 404
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
405
      .def("set_lod",
406
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
407
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
408
             LoD new_lod;
409 410
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
411 412
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
413
             self.set_lod(new_lod);
S
sneaxiy 已提交
414 415 416 417 418 419 420
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
436 437 438 439
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
440
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
441 442
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
443 444

           Args:
445
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
446
           )DOC")
447 448 449 450 451 452 453 454
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
455 456 457 458 459 460 461
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
462
      // Set above comments of set_lod.
463 464 465 466 467 468 469 470
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
471 472 473 474 475
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
476
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
490

Q
qijun 已提交
491 492 493 494 495 496 497 498 499 500 501
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
502 503
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
504 505
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
506 507 508 509 510 511 512 513 514
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
515
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
516
      .def("rows", [](SelectedRows &self) {
517 518 519 520 521
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
522
      });
Q
qijun 已提交
523

524
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
525 526 527

All parameter, weight, gradient are variables in Paddle.
)DOC")
528
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
529
      .def("set_int",
530 531
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
532 533 534 535 536 537 538
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
539
      .def("get_tensor",
540 541
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
542 543
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
544 545 546
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
547 548 549 550 551
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
552 553 554
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
555
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
556 557 558 559 560
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
561
#endif
Y
Refine  
Yu Yang 已提交
562 563 564 565 566
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
567
           py::return_value_policy::reference);
568

Y
Refine  
Yu Yang 已提交
569
  py::class_<framework::ReaderHolder>(m, "Reader", "")
Q
Qiao Longfei 已提交
570
      .def("start", &framework::ReaderHolder::Start)
571
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
572

S
sneaxiy 已提交
573 574 575 576
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
577 578
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
579
      .def("push",
S
sneaxiy 已提交
580
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
581
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
582
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
583
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
584
           })
S
sneaxiy 已提交
585 586 587 588
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
589

S
sneaxiy 已提交
590
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
591 592 593 594 595 596
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
597
        py::return_value_policy::copy);
S
sneaxiy 已提交
598

S
sneaxiy 已提交
599
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
619 620
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
621
      .def("var",
622
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
623
             return self.Var(name);
Y
Yu Yang 已提交
624
           },
S
sneaxiy 已提交
625 626
           py::arg("name"),
           R"DOC(
627
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
628

629
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
630
           current scope, the variable would be created. Otherwise,
631
           return the existing variable.
S
sneaxiy 已提交
632 633

           Args:
634 635
               name (str): the variable name.

S
sneaxiy 已提交
636
           Returns:
637
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
638 639 640 641
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
642
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
643
           its parent scope. Return None if not found.
644

S
sneaxiy 已提交
645 646
           Args:
               name (str): the variable name.
647

S
sneaxiy 已提交
648
           Returns:
649
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
650
           )DOC",
651
           py::return_value_policy::reference)
652
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
653 654 655 656 657 658
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
659
           py::return_value_policy::reference)
S
sneaxiy 已提交
660 661 662 663
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
           )DOC");
664

S
sneaxiy 已提交
665 666 667 668 669 670
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
671 672
        R"DOC(
        Create a new scope.
673

S
sneaxiy 已提交
674 675 676
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
677 678
        py::return_value_policy::reference);

Y
Yu Yang 已提交
679 680
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
681 682
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
683 684 685 686 687 688 689 690 691 692
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
693 694
    return ret_values;
  });
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
711
  m.def("prune", [](const ProgramDesc &origin,
712
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
713
    ProgramDesc prog_with_targets(origin);
714
    for (const auto &t : targets) {
715
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
716
    }
717
    proto::ProgramDesc pruned_desc;
718
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
719
    return new ProgramDesc(pruned_desc);
720
  });
721 722 723 724
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
725 726 727
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
728 729
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
730
  // clang-format off
Y
Yu Yang 已提交
731
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
732 733
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
734
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
735 736 737
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
738
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
739
                      -> paddle::platform::DeviceContext* {
740
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
741
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
742
#else
Q
qijun 已提交
743
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
744
#endif
C
chengduoZH 已提交
745 746 747 748 749 750 751 752 753 754 755
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
756
// clang-format on
P
peizhilin 已提交
757
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
758 759
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
760
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
761 762 763 764 765 766 767 768 769 770 771 772
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
773 774 775 776 777
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
778
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
779

780 781
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
S
sneaxiy 已提交
782 783 784 785 786
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
787
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
788

C
chengduoZH 已提交
789
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
790
      .def("__init__",
S
sneaxiy 已提交
791
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
792 793 794
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
795
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
796
           })
S
sneaxiy 已提交
797 798 799 800 801 802 803
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
804 805
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
806 807
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
808 809 810 811
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
812 813 814 815 816 817
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
Y
Yu Yang 已提交
818 819 820 821 822
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
823
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
824
             self = gpu_place;
C
chengduoZH 已提交
825 826
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
827 828
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
829
      });
Y
Yu Yang 已提交
830

Y
Yu Yang 已提交
831 832 833
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
834
                    proto::OpDesc desc;
Y
Yu Yang 已提交
835 836 837 838 839
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
840
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
841
                  })
842
      .def("run",
843
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
844 845 846
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
847
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
848 849 850 851 852
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
853 854 855 856 857 858 859
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
860 861
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
862
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
863
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
864 865 866 867
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
868

F
fengjiayi 已提交
869
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
870
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
871
      .def("close", &Executor::Close)
S
sneaxiy 已提交
872
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
873 874
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
875
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
876 877
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
878
      });
S
sneaxiy 已提交
879

D
dzhwinter 已提交
880
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
881
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
882 883
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
884

885
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
886
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
887
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
888
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
889
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
890 891 892 893 894 895
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
896

897
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
898
  m.def("get_fetch_variable", framework::GetFetchVariable);
899
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
900

X
Xin Pan 已提交
901 902
  m.def("_is_program_version_supported", IsProgramVersionSupported);

903 904 905 906 907
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
908

Y
Yu Yang 已提交
909 910 911 912 913 914 915 916 917
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
918
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
919 920
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
921 922 923 924 925 926 927 928 929 930
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
931 932 933 934 935 936 937
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
938

D
dzhwinter 已提交
939 940 941
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
942
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
943
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
944
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
945

P
peizhilin 已提交
946
#ifndef _WIN32
D
dangqingqing 已提交
947 948 949
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
950
#endif
P
peizhilin 已提交
951
#endif
Y
Yu Yang 已提交
952

953 954 955 956
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
957
      .value("kAll", platform::ProfilerState::kAll)
958 959 960 961 962 963 964 965 966 967 968 969 970
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
971
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
972
  m.def("reset_profiler", platform::ResetProfiler);
973
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
974 975 976
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
977

978 979
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
980
      .def("has", &ir::Pass::Has)
981 982 983
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
984
           })
985
      .def(
986
          "set",
987 988 989
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
990 991
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
992 993 994 995
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
996
        optim_graph.release();
F
flame 已提交
997
      });
998

X
fix  
Xin Pan 已提交
999 1000
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1015
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1016

Y
yuyang18 已提交
1017
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1018 1019 1020 1021
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1033 1034 1035

        )DOC");

Y
yuyang18 已提交
1036
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1037 1038 1039 1040 1041
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1052
      .def_property(
1053 1054 1055 1056
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1057 1058 1059 1060
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1061 1062 1063 1064 1065
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1066 1067 1068 1069
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1070 1071 1072 1073 1074 1075 1076
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1088 1089 1090 1091 1092 1093
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1094

Y
yuyang18 已提交
1095
  exec_strategy.def_property(
Y
yuyang18 已提交
1096 1097 1098 1099 1100 1101 1102
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1103 1104
      });

C
chengduo 已提交
1105 1106 1107 1108
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1120
)DOC");
Y
yuyang18 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1137
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1138
            self.reduce_ = strategy;
C
chengduo 已提交
1139 1140 1141 1142 1143 1144 1145
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1146 1147 1148 1149 1150
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1151
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1152
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1153 1154 1155 1156 1157 1158
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1159 1160 1161 1162
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1163
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1164
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1165 1166 1167 1168
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1169 1170 1171 1172 1173 1174
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1175
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1185
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1186 1187
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1188
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1189 1190 1191 1192 1193 1194
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1207 1208 1209 1210 1211 1212
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1213
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1214 1215 1216 1217 1218
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
Q
qingqing01 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1248 1249 1250 1251
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1252 1253 1254 1255
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1256
      .def_property(
D
dzhwinter 已提交
1257 1258 1259
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
1260
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1261
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1262 1263 1264 1265 1266
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1267 1268

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1269
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1270
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1271
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1272 1273 1274 1275
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1276 1277 1278 1279 1280
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1281 1282 1283 1284
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1285 1286 1287 1288 1289 1290
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1291

1292
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1293
  BindAsyncExecutor(&m);
F
flame 已提交
1294 1295
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1296
  BindInferenceApi(&m);
L
Luo Tao 已提交
1297
}
1298
}  // namespace pybind
1299
}  // namespace paddle