test.cc 4.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <cstring>  // for memcpy
#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
23
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
24

T
tensor-tang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

template <typename T>
void ExpectEQ(const T* target, const T* refer, int n) {
  if (std::is_floating_point<T>::value) {
    for (int i = 0; i < n; ++i) {
      EXPECT_NEAR(target[i], refer[i], 1e-3);
    }
  } else {
    for (int i = 0; i < n; ++i) {
      EXPECT_EQ(target[i], refer[i]);
    }
  }
}

T
tensor-tang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
std::vector<int> TestSizes() {
  std::vector<int> s;
  for (int i = 1; i < 30; ++i) {
    s.push_back(i);
  }
  // test some large size
  s.push_back(100);
  s.push_back(1000);
  return s;
}

template <typename T, typename Func>
void TestTartgetFunc(const Func tgt, const std::vector<T>& x,
                     const std::vector<T>& y, const std::vector<T>& zref) {
  EXPECT_TRUE(tgt != nullptr);
  EXPECT_EQ(zref.size(), x.size());
  EXPECT_EQ(zref.size(), y.size());
  const T* x_data = x.data();
  const T* y_data = y.data();
  const T* zref_data = zref.data();
  const int d = zref.size();

  std::vector<T> ztgt(d);
  T* ztgt_data = ztgt.data();
  // test normal
  tgt(x_data, y_data, ztgt_data, d);
  ExpectEQ<T>(ztgt_data, zref_data, d);
  // test inplace x
  std::copy(x.begin(), x.end(), ztgt.begin());
  tgt(ztgt_data, y_data, ztgt_data, d);
  ExpectEQ<T>(ztgt_data, zref_data, d);
  // test inplace y
  std::copy(y.begin(), y.end(), ztgt.begin());
  tgt(x_data, ztgt_data, ztgt_data, d);
  ExpectEQ<T>(ztgt_data, zref_data, d);
}

T
tensor-tang 已提交
86 87 88
TEST(JitKernel, vmul) {
  using T = float;
  using PlaceType = paddle::platform::CPUPlace;
T
tensor-tang 已提交
89
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
90 91 92
  const auto KT = jit::vmul;
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, T, jit::VMulTuples<T>::func_type,
T
tensor-tang 已提交
93
                             jit::VMulTuples<T>::attr_type>();
T
tensor-tang 已提交
94 95
    EXPECT_TRUE(ref != nullptr);

T
tensor-tang 已提交
96
    std::vector<T> x(d), y(d), zref(d);
T
tensor-tang 已提交
97 98 99
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());

T
tensor-tang 已提交
100 101 102 103 104 105 106 107 108 109 110
    std::vector<T> xinp(d), yinp(d);  // inplace test
    std::copy(x.begin(), x.end(), xinp.begin());
    std::copy(y.begin(), y.end(), yinp.begin());

    const T* x_data = x.data();
    const T* y_data = y.data();
    T* zref_data = zref.data();
    T* xinp_data = xinp.data();
    T* yinp_data = yinp.data();

    // test refer code inplace
T
tensor-tang 已提交
111
    ref(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    ref(x_data, yinp_data, yinp_data, d);
    ref(xinp_data, y_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, zref_data, d);
    ExpectEQ<T>(yinp_data, zref_data, d);

    // test jitcode
    auto jitcode = jit::GetJitCode<KT, T, jit::VMulTuples<T>::func_type,
                                   jit::VMulTuples<T>::attr_type, PlaceType>(d);
    if (jitcode) {
      VLOG(10) << "Test jitcode, size: " << d;
      TestTartgetFunc<T, jit::VMulTuples<T>::func_type>(jitcode, x, y, zref);
    }

    // test all impls in more
    jit::KernelKey kkey(KT, PlaceType());
    auto& pool = jit::KernelPool().Instance().AllKernels();
    auto iter = pool.find(kkey);
    if (iter != pool.end()) {
      auto& impls = iter->second;
      for (auto& impl : impls) {
        auto i =
            dynamic_cast<const jit::KernelImpl<T, jit::VMulTuples<T>::func_type,
                                               jit::VMulTuples<T>::attr_type>*>(
                impl.get());
        if (i && i->UseMe(d)) {
          auto more = i->GetFunc();
          VLOG(10) << "Test More Kernel, size: " << d;
          TestTartgetFunc<T, jit::VMulTuples<T>::func_type>(more, x, y, zref);
        }
      }
    }
    // Test result from Get function
    VLOG(10) << "Test Get function, size: " << d;
    auto tgt = jit::Get<KT, T, jit::VMulTuples<T>::func_type,
                        jit::VMulTuples<T>::attr_type, PlaceType>(d);
    TestTartgetFunc<T, jit::VMulTuples<T>::func_type>(tgt, x, y, zref);
T
tensor-tang 已提交
148 149
  }
}
T
tensor-tang 已提交
150 151

TEST(JitKernel, pool) {}