pool_op.cc 18.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16 17 18 19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34
int PoolOutputSize(int input_size, int filter_size, int padding, int stride,
                   bool ceil_mode) {
  int output_size;
  if (!ceil_mode) {
    output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  } else {
    output_size =
        (input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
  }
C
chengduoZH 已提交
35 36 37 38 39
  PADDLE_ENFORCE(output_size > 0,
                 "Due to the settings of padding(%d), filter_size(%d) and "
                 "stride(%d), the output size is less than 0, please check "
                 "again. Input_size:%d",
                 padding, filter_size, stride, input_size);
40 41 42
  return output_size;
}

C
chengduo 已提交
43
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
44 45 46 47 48 49
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
50
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
51 52 53
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
54
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
55
  bool adaptive = ctx->Attrs().Get<bool>("adaptive");
56 57

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
58
                 "Pooling intput should be 4-D or 5-D tensor.");
59

C
chengduoZH 已提交
60
  if (ctx->Attrs().Get<bool>("global_pooling")) {
61
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
62 63
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
64
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
65
    }
66
  }
67 68 69 70 71 72 73 74 75

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
76 77 78 79 80 81 82
  if (adaptive) {
    output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
  } else {
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(PoolOutputSize(
          in_x_dims[i + 2], ksize[i], paddings[i], strides[i], ceil_mode));
    }
83
  }
84
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
85
  ctx->ShareLoD("X", "Out");
86 87
}

88
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
89
    const framework::ExecutionContext& ctx) const {
90
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
91 92 93
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
94
#ifdef PADDLE_WITH_CUDA
95 96
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
97 98
  }
#endif
99 100 101 102
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
103
    layout_ = framework::DataLayout::kMKLDNN;
104
  }
105
#endif
106

Y
Yu Yang 已提交
107 108
  return framework::OpKernelType(ctx.Input<Tensor>("X")->type(), ctx.GetPlace(),
                                 layout_, library_);
109 110
}

C
chengduo 已提交
111
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
112 113 114 115 116 117
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

118
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
119
    const framework::ExecutionContext& ctx) const {
120
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
121 122 123
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
124
#ifdef PADDLE_WITH_CUDA
125 126
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
127 128
  }
#endif
129 130 131 132
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
133
    layout_ = framework::DataLayout::kMKLDNN;
134
  }
135
#endif
136

Y
Yu Yang 已提交
137
  auto input_data_type = ctx.Input<Tensor>("X")->type();
K
Kexin Zhao 已提交
138 139 140 141 142 143
  if (input_data_type == framework::proto::VarType::FP16) {
    PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
                      "float16 can only be used when CUDNN is used");
  }
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
144 145
}

Y
Yu Yang 已提交
146
void Pool2dOpMaker::Make() {
147 148
  AddInput(
      "X",
C
chengduoZH 已提交
149
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
150 151 152
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
153
  AddOutput("Out",
K
kexinzhao 已提交
154 155 156 157
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
158
            "and W is the width of the feature.");
159

C
chengduoZH 已提交
160
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
161 162
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
163
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
164
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
165 166
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
167
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
168 169
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
170
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
171
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
172
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
173
                "If global_pooling = true, ksize and paddings will be ignored.")
174
      .SetDefault(false);
K
kexinzhao 已提交
175 176 177
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
178 179
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
180 181 182
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
183
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
184
      "operator."
C
chengduoZH 已提交
185
      "If global_pooling = true, paddings and ksize will be ignored.")
186
      .SetDefault({0, 0});
187 188 189 190 191 192
  AddAttr<bool>(
      "exclusive",
      "(bool, default True) When true, will exclude the zero-padding in the "
      "averaging calculating, otherwise, include the zero-padding. Note, it "
      "is only used when pooling_type is avg. The defalut is True.")
      .SetDefault(true);
193 194 195 196 197 198 199 200
  AddAttr<bool>(
      "adaptive",
      "(bool, default False) When true, will perform adaptive pooling instead, "
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
      "pooling in each grid area to get output pooling value.")
      .SetDefault(false);

201 202 203 204
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
205 206 207
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
208 209
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
210
      .SetDefault(false);
211 212 213
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
214 215 216 217 218 219 220
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
221 222 223 224 225
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);

226
  // TODO(dzhwinter): need to registered layout transform function
227 228

  AddComment(R"DOC(
C
chengduoZH 已提交
229
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
230
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
231 232
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
233 234
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
235 236
The input(X) size and output(Out) size may be different.

237
Example:
F
fengjiayi 已提交
238

C
chengduoZH 已提交
239
  Input:
F
fengjiayi 已提交
240

K
kexinzhao 已提交
241
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
242

C
chengduoZH 已提交
243
  Output:
F
fengjiayi 已提交
244

K
kexinzhao 已提交
245
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
246

247 248
  For ceil_mode = false:
       $$
F
fengjiayi 已提交
249
       H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
F
fengjiayi 已提交
250 251
       $$
       $$
F
fengjiayi 已提交
252
       W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
253
       $$
254 255
  For ceil_mode = true:
       $$
F
fengjiayi 已提交
256
       H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
257 258
       $$
       $$
F
fengjiayi 已提交
259
       W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
260
       $$
K
kexinzhao 已提交
261

262
  For exclusive = false:
263 264
       $$
       hstart = i * strides[0] - paddings[0]
D
dengkaipeng 已提交
265 266
       $$
       $$
267
       hend = hstart + ksize[0]
D
dengkaipeng 已提交
268 269
       $$
       $$
270
       wstart = j * strides[1] - paddings[1]
D
dengkaipeng 已提交
271 272
       $$
       $$
273
       wend = wstart + ksize[1]
D
dengkaipeng 已提交
274 275
       $$
       $$
276 277
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
278
  For exclusive = true:
279 280
       $$
       hstart = max(0, i * strides[0] - paddings[0])
D
dengkaipeng 已提交
281 282
       $$
       $$
283
       hend = min(H, hstart + ksize[0])
D
dengkaipeng 已提交
284 285
       $$
       $$
286
       wstart = max(0, j * strides[1] - paddings[1])
D
dengkaipeng 已提交
287 288
       $$
       $$
289
       wend = min(W, wstart + ksize[1])
D
dengkaipeng 已提交
290 291
       $$
       $$
292 293 294
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$

295
  For adaptive = true:
D
dengkaipeng 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
       $$
       hstart = floor(i * H_{in} / H_{out})
       $$
       $$
       hend = ceil((i + 1) * H_{in} / H_{out})
       $$
       $$
       wstart = floor(j * W_{in} / W_{out})
       $$
       $$
       wend = ceil((j + 1) * W_{in} / W_{out})
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$
311
)DOC");
312 313
}

C
chengduo 已提交
314 315 316 317 318 319 320 321
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

Y
Yu Yang 已提交
322
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
323 324 325 326 327 328
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
329
  AddOutput("Out",
C
chengduoZH 已提交
330
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
331 332 333
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
334
            "width of the feature, respectively.");
335

C
chengduoZH 已提交
336
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
337
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
338
                       "and \"avg\" for average-pooling.")
339
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
340 341 342 343
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
344
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
345 346
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
347
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
348 349 350 351
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
352
      .SetDefault(false);
K
kexinzhao 已提交
353 354 355 356
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
357 358
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
359 360
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
361
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
362
      "width) of pooling operator. "
C
chengduoZH 已提交
363
      "If global_pooling = true, ksize and paddings will be ignored.")
364 365
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
366 367 368 369 370 371
  AddAttr<bool>(
      "exclusive",
      "(bool, default True) When true, will exclude the zero-padding in the "
      "averaging calculating, otherwise, include the zero-padding. Note, it "
      "is only used when pooling_type is avg. The defalut is True.")
      .SetDefault(true);
372 373 374 375 376 377 378
  AddAttr<bool>(
      "adaptive",
      "(bool, default False) When true, will perform adaptive pooling instead, "
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
      "pooling in each grid area to get output pooling value.")
      .SetDefault(false);
379

380 381 382 383
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
384 385 386
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
387 388
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
389
      .SetDefault(false);
390 391 392
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
393 394 395 396 397 398 399 400 401
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

402
  AddComment(R"DOC(
K
kexinzhao 已提交
403 404
Pool3d Operator.

C
chengduoZH 已提交
405
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
406
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
407 408
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
409 410
width of the feature, respectively. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and
K
kexinzhao 已提交
411
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
412 413 414

Example:
  Input:
K
kexinzhao 已提交
415
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
416
  Output:
K
kexinzhao 已提交
417
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
418
  For ceil_mode = false:
C
chengduoZH 已提交
419 420 421 422 423
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
424 425 426 427 428 429
  For ceil_mode = true:
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
  $$
D
dengkaipeng 已提交
430

431
  For exclusive = false:
432 433
  $$
  dstart = i * strides[0] - paddings[0]
D
dengkaipeng 已提交
434 435
  $$
  $$
436
  dend = dstart + ksize[0]
D
dengkaipeng 已提交
437 438
  $$
  $$
439
  hstart = j * strides[1] - paddings[1]
D
dengkaipeng 已提交
440 441
  $$
  $$
442
  hend = hstart + ksize[1]
D
dengkaipeng 已提交
443 444
  $$
  $$
445
  wstart = k * strides[2] - paddings[2]
D
dengkaipeng 已提交
446 447
  $$
  $$
448
  wend = wstart + ksize[2]
D
dengkaipeng 已提交
449 450
  $$
  $$
451 452
  Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
  $$
453
  For exclusive = true:
454 455
  $$
  dstart = max(0, i * strides[0] - paddings[0])
D
dengkaipeng 已提交
456 457
  $$
  $$
458
  dend = min(D, dstart + ksize[0])
D
dengkaipeng 已提交
459 460
  $$
  $$
461
  hstart = max(0, j * strides[1] - paddings[1])
D
dengkaipeng 已提交
462 463
  $$
  $$
464
  hend = min(H, hstart + ksize[1])
D
dengkaipeng 已提交
465 466
  $$
  $$
467
  wstart = max(0, k * strides[2] - paddings[2])
D
dengkaipeng 已提交
468 469
  $$
  $$
470
  wend = min(W, wstart + ksize[2])
D
dengkaipeng 已提交
471 472
  $$
  $$
473 474 475 476 477 478
  Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
  $$

  For adaptive = true:
  $$
  dstart = floor(i * D_{in} / D_{out})
D
dengkaipeng 已提交
479 480
  $$
  $$
481
  dend = ceil((i + 1) * D_{in} / D_{out})
D
dengkaipeng 已提交
482 483
  $$
  $$
484
  hstart = floor(j * H_{in} / H_{out})
D
dengkaipeng 已提交
485 486
  $$
  $$
487
  hend = ceil((j + 1) * H_{in} / H_{out})
D
dengkaipeng 已提交
488 489
  $$
  $$
490
  wstart = floor(k * W_{in} / W_{out})
D
dengkaipeng 已提交
491 492
  $$
  $$
493
  wend = ceil((k + 1) * W_{in} / W_{out})
D
dengkaipeng 已提交
494 495
  $$
  $$
496 497
  Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
  $$
K
kexinzhao 已提交
498

499
)DOC");
500
}
501 502 503 504 505
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

Y
Yang Yang 已提交
506
REGISTER_OPERATOR(pool2d, ops::PoolOp, ops::Pool2dOpMaker,
C
chengduo 已提交
507
                  ops::PoolOpInferVarType,
508 509
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
510

Q
QI JUN 已提交
511 512 513 514 515
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
516
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
517

Y
Yang Yang 已提交
518
REGISTER_OPERATOR(pool3d, ops::PoolOp, ops::Pool3dOpMaker,
C
chengduo 已提交
519
                  ops::PoolOpInferVarType,
520 521
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
522

Q
QI JUN 已提交
523 524 525 526 527 528
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);