reshape_op.cc 11.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15 16
#include <string>
#include <vector>
Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
18

Y
Yibing Liu 已提交
19 20 21
namespace paddle {
namespace operators {

Y
yuyang18 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of ReshapeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ReshapeOp should not be null.");

    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    PADDLE_ENFORCE(!shape.empty(),
                   "The shape information must be set by Attr(shape).");

    if (ctx->HasInput("Shape") && ctx->IsRuntime()) {
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }

    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
        PADDLE_ENFORCE(
            unk_dim_idx == -1,
            "Only one input dimension of Attr(shape) can be unknown.");
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
        PADDLE_ENFORCE(
            static_cast<int>(i) < in_dims.size(),
            "The index of dimension to copy from input shape must be less "
            "than the size of input shape.");
      } else {
        PADDLE_ENFORCE(
            shape[i] > 0,
            "Each input dimension of Attr(shape) must not be negtive except "
            "one unknown dimension.");
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
      if (in_size > 0) {
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
        PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
                          "Invalid shape is given.");
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
      PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given.");
    }
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
        ctx.device_context());
  }
};

Y
Yibing Liu 已提交
117 118
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
119
  void Make() override {
120 121 122 123 124 125 126 127
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
             "(Tensor<int32>, optional). If provided, reshape according to "
             "this given shape. That is to say it has a higher priority than "
             "the shape attribute, while the shape attribute still should be "
             "set correctly to gurantee shape inference in compile time.")
        .AsDispensable();
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
128
    AddAttr<std::vector<int>>(
C
caoying03 已提交
129
        "shape", "(std::vector<int>) Target shape of reshape operator.");
Y
Yan Chunwei 已提交
130
    AddAttr<bool>("inplace",
C
caoying03 已提交
131 132 133 134 135
                  "(default: false) Change the source tensor's shape without "
                  "memory copy. When Attr(inplace) is set true, the output "
                  "tensor shares memory with Input(X), otherwise, a new output "
                  "tensor is created, and its data are copied from Input(x).")
        .SetDefault(false);
K
kexinzhao 已提交
136 137
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
138

139 140
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
141

C
caoying03 已提交
142
Examples:
Y
Yibing Liu 已提交
143

C
caoying03 已提交
144 145 146 147
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

148
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
149 150 151 152 153 154
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

155
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
156 157 158 159
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
160

C
caoying03 已提交
161
Note:
Y
Yibing Liu 已提交
162

C
caoying03 已提交
163 164 165
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
166 167

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
168
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
169
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
170
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
171 172

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
173 174
Attr(shape) still should be set correctly to gurantee shape inference in 
compile-time.
Y
Yibing Liu 已提交
175

Y
Yibing Liu 已提交
176 177 178 179 180 181 182 183 184 185 186 187
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

188
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
189 190 191 192
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
193
  }
194 195 196 197 198 199 200 201

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
        ctx.device_context());
  }
Y
Yibing Liu 已提交
202 203
};

Y
yuyang18 已提交
204 205 206 207 208
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
Y
yuyang18 已提交
209

Y
yuyang18 已提交
210 211 212
    auto *shape_tensor = ctx.HasInput("Shape")
                             ? ctx.Input<framework::LoDTensor>("Shape")
                             : nullptr;
Y
yuyang18 已提交
213

Y
yuyang18 已提交
214
    framework::DDim out_dims = out->dims();
Y
yuyang18 已提交
215

Y
yuyang18 已提交
216 217 218
    if (shape_tensor) {
      auto *shape_data = shape_tensor->data<int>();
      framework::Tensor cpu_shape_tensor;
219
      if (platform::is_gpu_place(shape_tensor->place())) {
Y
yuyang18 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233
        TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor);
        shape_data = cpu_shape_tensor.data<int>();
      }
      auto shape =
          std::vector<int>(shape_data, shape_data + shape_tensor->numel());
      out_dims = ReshapeOp::ValidateShape(shape, in->dims());
    }
    if (!in->lod().empty()) {
      PADDLE_ENFORCE_EQ(
          out_dims[0], in->dims()[0],
          "Reshape operator cannot reshape an input sequence batch "
          "into an output sequence batch that has a different "
          "number of time steps. Please consider using "
          "sequence_reshape op.");
Y
yuyang18 已提交
234 235
    }

Y
yuyang18 已提交
236
    bool inplace = ctx.Attr<bool>("inplace");
Y
yuyang18 已提交
237
    out->Resize(out_dims);
Y
yuyang18 已提交
238 239 240 241 242 243 244 245
    if (!inplace) {
      out->mutable_data(ctx.GetPlace(), in->type());
      framework::TensorCopySync(*in, ctx.GetPlace(), out);
      out->Resize(out_dims);
    } else {
      out->ShareDataWith(*in);
      out->Resize(out_dims);
    }
Y
yuyang18 已提交
246
  }
Y
yuyang18 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));

    d_x->mutable_data(ctx.GetPlace(), d_out->type());
    bool inplace = ctx.Attr<bool>("inplace");

    auto in_dims = d_x->dims();
    if (!inplace) {
      framework::TensorCopy(*d_out, ctx.GetPlace(), ctx.device_context(), d_x);
      ctx.device_context().Wait();
      d_x->Resize(in_dims);
    } else {
      d_x->ShareDataWith(*d_out);
      d_x->Resize(in_dims);
    }
Y
yuyang18 已提交
267
  }
Y
yuyang18 已提交
268 269
};

Y
Yibing Liu 已提交
270 271 272 273
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

Y
Yang Yang 已提交
274
REGISTER_OPERATOR(reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
275 276
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp);
277 278 279 280 281 282 283
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
Y
yuyang18 已提交
284 285 286 287 288 289 290 291 292 293

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
                                int64_t, ops::ReshapeKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
                                ops::ReshapeGradKernel);
#endif