cross_entropy_op.h 2.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
D
dongzhihong 已提交
16
#include "paddle/framework/op_registry.h"
Q
Qiao Longfei 已提交
17 18 19 20

namespace paddle {
namespace operators {

D
dongzhihong 已提交
21 22
using Tensor = framework::Tensor;

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
template <typename T>
T tolerable_value(T x) {
  static_assert(std::is_floating_point<T>::value,
                "tolerable_value works only on float, "
                "double and double double.");

  const T kApproInf = 1e20;

  if (x == INFINITY) {
    return kApproInf;
  }

  if (x == -INFINITY) {
    return -kApproInf;
  }

  return x;
}
Y
Yan Chunwei 已提交
41

Q
Qiao Longfei 已提交
42
template <typename Place, typename T>
D
dongzhihong 已提交
43
class OnehotCrossEntropyOpKernel : public framework::OpKernel {
44
 public:
D
dongzhihong 已提交
45
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
Yan Chunwei 已提交
46 47
    auto X = ctx.Input<Tensor>("X");
    const T* Xdata = X->data<T>();
48
    const int* label_data = ctx.Input<Tensor>(1)->data<int>();
Y
Yan Chunwei 已提交
49
    auto Y = ctx.Output<Tensor>("Y");
Q
Qiao Longfei 已提交
50

51
    Y->mutable_data<T>(ctx.GetPlace());
Q
Qiao Longfei 已提交
52

Y
Yan Chunwei 已提交
53
    T* Ydata = Y->data<T>();
Q
Qiao Longfei 已提交
54

55 56
    int batch_size = X->dims()[0];
    int class_num = X->dims()[1];
Q
Qiao Longfei 已提交
57 58

    for (int i = 0; i < batch_size; ++i) {
59 60
      int index = i * class_num + label_data[i];
      Ydata[i] = -tolerable_value(std::log(Xdata[index]));
Y
Yan Chunwei 已提交
61 62 63 64 65
    }
  }
};

template <typename Place, typename T>
D
dongzhihong 已提交
66
class OnehotCrossEntropyGradientOpKernel : public framework::OpKernel {
Y
Yan Chunwei 已提交
67
 public:
D
dongzhihong 已提交
68
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
Yan Chunwei 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82
    auto X = ctx.Input<Tensor>("X");
    auto dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto dY = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto label = ctx.Input<Tensor>("label");

    auto* dXdata = dX->template mutable_data<T>(ctx.GetPlace());
    auto* dYdata = dY->template data<T>();
    auto* Xdata = X->template data<T>();
    auto* label_data = label->data<int>();

    const int batch_size = X->dims()[0];
    const int class_num = X->dims()[1];

    for (int i = 0; i < batch_size; ++i) {
83 84
      int index = i * class_num + label_data[i];
      dXdata[index] = -tolerable_value(dYdata[i] / Xdata[index]);
Q
Qiao Longfei 已提交
85 86 87 88 89 90
    }
  }
};

}  // namespace operators
}  // namespace paddle