framework.py 101.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
Q
qiaolongfei 已提交
29

M
minqiyang 已提交
30
from .. import compat as cpt
31
from .proto import framework_pb2
32
try:
P
peizhilin 已提交
33
    if os.name == 'nt':
P
peizhilin 已提交
34
        import sys
P
peizhilin 已提交
35 36 37 38 39
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

40
    from . import core
41
except ImportError as e:
P
peizhilin 已提交
42
    if os.name == 'nt':
43
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
44
        raise ImportError(
45 46 47 48 49
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
50 51 52 53 54 55
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
56
except Exception as e:
57
    raise e
58
from . import unique_name
Y
Yu Yang 已提交
59

60
__all__ = [
61 62 63 64
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
65
    'name_scope',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74
_imperative_tracer_ = None
M
minqiyang 已提交
75
_imperative_current_expected_place_ = None
76 77 78 79 80 81 82 83 84


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
85

M
minqiyang 已提交
86
def _current_expected_place():
M
minqiyang 已提交
87
    return _imperative_current_expected_place_
M
minqiyang 已提交
88 89


Q
Qiao Longfei 已提交
90 91 92 93 94 95 96 97 98
def is_pserver_mode(main_program):
    main = main_program if main_program \
        else default_main_program()
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
125
@signature_safe_contextmanager
126 127 128 129 130 131 132 133 134 135 136 137
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
138

139 140 141 142
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
143 144
          with name_scope("attention"):
             ...
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
164 165 166
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
167 168 169 170


def grad_var_name(var_name):
    """
171 172
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
173 174 175
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
176

177
def convert_np_dtype_to_dtype_(np_dtype):
178 179
    """
    Convert the data type in numpy to the data type in Paddle
180

181
    Args:
182
        np_dtype(np.dtype): the data type in numpy.
183

184 185
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
186 187

    """
188 189
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
190
        return core.VarDesc.VarType.FP32
191
    elif dtype == np.float64:
192
        return core.VarDesc.VarType.FP64
193
    elif dtype == np.float16:
194
        return core.VarDesc.VarType.FP16
195
    elif dtype == np.int32:
196
        return core.VarDesc.VarType.INT32
197
    elif dtype == np.int16:
198
        return core.VarDesc.VarType.INT16
199
    elif dtype == np.int64:
200
        return core.VarDesc.VarType.INT64
201
    elif dtype == np.bool:
202
        return core.VarDesc.VarType.BOOL
203 204
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
205 206
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
207 208
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
209
    else:
M
minqiyang 已提交
210
        raise ValueError("Not supported numpy dtype %s" % dtype)
211 212 213


def dtype_is_floating(dtype):
214 215 216
    """
    Check the data type is floating or not.
    Args:
217
        dtype(np.dtype|core.VarDesc.VarType): data type.
218 219 220 221 222
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
223
    if not isinstance(dtype, core.VarDesc.VarType):
224 225
        dtype = convert_np_dtype_to_dtype_(dtype)

226 227 228 229
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
230 231


Y
Yang Yang(Tony) 已提交
232
def _debug_string_(proto, throw_on_error=True):
233 234 235 236 237 238 239 240 241 242 243
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
244
    error_fields = list()
Y
Yang Yang(Tony) 已提交
245
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
246 247
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
248 249 250
    return proto.__str__()


X
Xin Pan 已提交
251
class Variable(object):
252
    """
253 254 255
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
256
    two variables in different blocks could have the same name.
257

258 259
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
260

261
    Most of a Variable's member variables can be setted to be None. It mean
262
    it is not available or will be specified later.
263 264

    Args:
265
        block(Block): The block that the variable belongs to.
266 267
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
268 269
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
270
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
271
            Some kinds of variable do not contain shape, just set it to None.
272 273 274
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
275
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
276
            series data.
277
            Default: None
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
300 301
    """

Y
Yu Yang 已提交
302 303
    def __init__(self,
                 block,
Y
Yu Yang 已提交
304
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
305 306 307 308
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
309
                 capacity=None,
Q
QI JUN 已提交
310
                 persistable=None,
F
fengjiayi 已提交
311
                 error_clip=None,
Y
Yu Yang 已提交
312
                 stop_gradient=False,
F
fengjiayi 已提交
313
                 is_data=False,
Y
Yu Yang 已提交
314
                 **kwargs):
Y
Yu Yang 已提交
315
        self.block = block
F
fengjiayi 已提交
316
        self.error_clip = error_clip
Y
Yu Yang 已提交
317 318

        if name is None:
Y
Yu Yang 已提交
319
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
320
        is_new_var = False
M
minqiyang 已提交
321
        name = cpt.to_text(name)
M
minqiyang 已提交
322
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
323 324

        if self.desc is None:
M
minqiyang 已提交
325
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
326
            is_new_var = True
Y
Yu Yang 已提交
327

Y
Yu Yang 已提交
328 329 330 331 332 333 334 335
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
336
        if shape is not None:
Y
Yu Yang 已提交
337
            if is_new_var:
338
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
339 340 341 342 343 344 345 346
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
347
        if dtype is not None:
348
            if not isinstance(dtype, core.VarDesc.VarType):
349
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
350
            if is_new_var:
F
fengjiayi 已提交
351
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
352
            else:
F
fengjiayi 已提交
353
                old_dtype = self.dtype
Q
QI JUN 已提交
354
                if dtype != old_dtype:
Y
Yu Yang 已提交
355 356 357 358 359
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
360 361

        if lod_level is not None:
Y
Yu Yang 已提交
362
            if is_new_var:
363
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
364 365 366 367 368 369 370
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
371 372 373 374 375 376 377 378 379 380 381
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

382 383 384 385 386 387 388 389
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

X
Xin Pan 已提交
390
        if _in_imperative_mode():
M
minqiyang 已提交
391
            # record vars in tracer rather than blocks
M
minqiyang 已提交
392 393
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
M
minqiyang 已提交
394
                self._ivar = core.VarBase(stop_gradient)
X
Xin Pan 已提交
395
            self._ivar.desc = self.desc
396 397
            self._ivar.block = block.desc
            self._ivar.name = name
398
            self._ivar.persistable = persistable
M
minqiyang 已提交
399 400
            if persistable:
                self.block.vars[name] = self
M
minqiyang 已提交
401 402 403 404 405
        else:
            self.block.vars[name] = self
        self.op = None
        self.stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
406

407
    def _numpy(self):
M
minqiyang 已提交
408
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
409
        return np.array(new_ivar.value().get_tensor())
410 411

    def _backward(self):
X
Xin Pan 已提交
412
        self._ivar._run_backward()
413 414

    def _gradient(self):
M
minqiyang 已提交
415
        return np.array(self._ivar._grad_value())
416

X
Xin Pan 已提交
417 418
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
419

420
    def __str__(self):
Y
Yang Yang(Tony) 已提交
421 422
        return self.to_string(True)

F
update  
fengjiayi 已提交
423
    def to_string(self, throw_on_error, with_details=False):
424 425 426 427
        """
        Get debug string.

        Args:
428 429
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
430
            with_details(bool): more details about variables and parameters
431 432
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
433

434 435
        Returns:
            str: The debug string.
436
        """
F
update  
fengjiayi 已提交
437 438
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
439
        protostr = self.desc.serialize_to_string()
440
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
441 442 443 444
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
445 446
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
447
        return res_str
448 449 450

    __repr__ = __str__

W
Wu Yi 已提交
451
    def _set_desc(self, input):
452 453 454 455 456 457 458 459 460
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
461 462
        self.desc = input

463 464
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
465 466 467 468
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
469 470 471

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
472 473 474
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
475

476 477 478 479
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
480 481 482 483
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
484 485
    @property
    def name(self):
M
minqiyang 已提交
486
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
487

T
typhoonzero 已提交
488 489 490 491
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
492 493 494
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
495
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
496 497

    @property
F
fengjiayi 已提交
498 499
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
500 501 502

    @property
    def lod_level(self):
503
        return self.desc.lod_level()
Y
Yu Yang 已提交
504

Y
Yu Yang 已提交
505 506 507 508
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
509
    def _set_error_clip(self, error_clip):
510 511 512 513 514 515 516 517 518
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
519 520
        self.error_clip = error_clip

Y
Yu Yang 已提交
521

F
fengjiayi 已提交
522 523 524
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
525

526 527
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
528 529 530 531
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
532
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
533 534 535 536 537
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
538 539 540 541
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
542 543 544 545 546 547 548 549 550
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
551
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
552 553 554 555 556 557
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
558 559 560 561 562 563 564 565
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
566 567
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
568 569
        return self.op_proto_map[type]

570 571 572 573
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
574
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
575 576
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
577 578
        }

F
fengjiayi 已提交
579

X
Xin Pan 已提交
580
class Operator(object):
581
    """
582 583 584 585 586 587 588
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
589
        type(str): The type of operator. Default None.
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
610
        Block.append_op or Block._prepend_op instead.
611 612 613 614 615 616 617 618 619 620

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
621
    """
622 623 624
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
625 626
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
627
    }
628

Y
Yu Yang 已提交
629 630
    def __init__(self,
                 block,
Y
Yu Yang 已提交
631
                 desc,
Y
Yu Yang 已提交
632 633 634
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
635
                 attrs=None):
Y
Yu Yang 已提交
636
        self.block = block
Y
Yu Yang 已提交
637
        self.desc = desc
G
gongweibao 已提交
638 639 640 641 642
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
643 644 645 646
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
647 648
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
649 650 651

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
652 653
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
654

G
gongweibao 已提交
655 656
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
657

F
fengjiayi 已提交
658 659 660 661 662
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
663 664 665 666 667
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
668
        self.desc.set_type(type)
F
fengjiayi 已提交
669
        proto = OpProtoHolder.instance().get_op_proto(type)
670

671 672 673
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
674 675
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
676
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
677 678
                    return True
            return False
Q
QI JUN 已提交
679

Y
Yang Yang(Tony) 已提交
680 681 682 683 684 685 686
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
687 688 689 690
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
691 692
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
693 694 695
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
696
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
697
                            in_arg_names.append(arg)
698 699
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
700
                        else:
M
minqiyang 已提交
701
                            in_arg_names.append(cpt.to_text(arg.name))
702
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
703 704
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
705

Y
Yu Yang 已提交
706
        if outputs is not None:
707
            for m in proto.outputs:
Q
qingqing01 已提交
708 709 710 711 712 713
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
714
            for out_proto in proto.outputs:
Q
qingqing01 已提交
715 716
                if out_proto.name not in outputs:
                    continue
717 718 719 720
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
721 722
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
723 724 725
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
726
                    out_arg_names.append(cpt.to_text(arg.name))
727 728 729
                    # TODO(minqiyang): could we remove variable's op in static mode?
                    if not _in_imperative_mode():
                        arg.op = self
730
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
731

G
gongweibao 已提交
732 733
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
734
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
735
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
736
                attr_name = attr.name
G
gongweibao 已提交
737
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
738
                    continue
G
gongweibao 已提交
739
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
740 741
                self._update_desc_attr(attr_name, attr_val)

742
        self.desc.check_attrs()
W
Wu Yi 已提交
743
        if self._has_kernel(type):
Q
QI JUN 已提交
744
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
745
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
746

X
Xin Pan 已提交
747 748 749
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
M
minqiyang 已提交
750

X
Xin Pan 已提交
751
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
752
            if inputs is not None:
X
Xin Pan 已提交
753 754 755 756 757
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
M
minqiyang 已提交
758

X
Xin Pan 已提交
759
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
760
            if outputs is not None:
X
Xin Pan 已提交
761 762 763 764 765
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
766

W
Wu Yi 已提交
767
    def _has_kernel(self, op_type):
768 769
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
770
    def to_string(self, throw_on_error):
771
        """
772 773
        Get debug string.

774
        Args:
775 776
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
777

778 779
        Returns:
            str: The debug string.
780 781

        """
782
        protostr = self.desc.serialize_to_string()
783
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
784 785 786 787
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
788 789 790

    __repr__ = __str__

F
fengjiayi 已提交
791 792 793 794 795
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
796
        """
797
        Get the input arguments according to the input parameter name.
798

799 800
        Args:
            name(str): The input parameter name.
801

802 803 804
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
805
        """
F
fengjiayi 已提交
806 807
        return self.desc.input(name)

W
Wu Yi 已提交
808
    def _rename_input(self, old_name, new_name):
809 810 811 812 813 814 815 816 817 818
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
819
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
820

W
Wu Yi 已提交
821
    def _rename_output(self, old_name, new_name):
822 823 824 825 826 827 828 829 830 831
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
832
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
833

F
fengjiayi 已提交
834 835 836 837
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
838 839 840 841 842 843 844 845
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
846
    def output(self, name):
847
        """
848
        Get output arguments by the output parameter name.
849

850 851
        Args:
            name(str): The output parameter name.
852

853 854 855
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
856
        """
F
fengjiayi 已提交
857 858 859 860 861 862
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

863 864 865 866 867 868 869 870
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
871
    def has_attr(self, name):
872
        """
873 874
        Whether this Operator has the attribute with name or not.

875
        Args:
876
            name(str): the attribute name.
877

878 879
        Returns:
            bool: True if has this attribute.
880 881

        """
F
fengjiayi 已提交
882 883 884
        return self.desc.has_attr(name)

    def attr_type(self, name):
885
        """
886
        Get the type of attribute by attribute's name.
887

888 889
        Args:
            name(str): the attribute name.
890

891 892
        Returns:
            core.AttrType: the attribute type.
893
        """
F
fengjiayi 已提交
894 895
        return self.desc.attr_type(name)

W
Wu Yi 已提交
896
    def _set_attr(self, name, val):
897 898 899 900 901 902 903 904 905 906
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
920 921
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
922 923
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
924
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
925 926 927 928
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
929
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
930

F
fengjiayi 已提交
931 932 933 934 935
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
936
        """
937 938
        Get the attribute by name.

939
        Args:
940
            name(str): the attribute name.
941

942 943
        Returns:
            bool|int|str|float|list: The attribute value. The return value
944 945
            can be any valid attribute type.
        """
F
fengjiayi 已提交
946
        return self.desc.attr(name)
Y
Yu Yang 已提交
947

W
Wu Yi 已提交
948
    def _block_attr_id(self, name):
949
        """
G
gongweibao 已提交
950
        Get the block attribute's id by name.
951

952 953
        Args:
            name(str): the attribute name.
954

955 956
        Returns:
            int: the block index.
957
        """
W
Wu Yi 已提交
958
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
959

W
Wu Yi 已提交
960
    def _block_attr(self, name):
G
gongweibao 已提交
961 962 963 964 965 966 967 968 969 970
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
971
        id = self._block_attr_id(name)
G
gongweibao 已提交
972 973 974
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
975
    def _blocks_attr(self, name):
G
gongweibao 已提交
976 977 978 979 980 981 982 983 984 985
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
986
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
987 988 989 990 991
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
992
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
993 994 995 996 997 998 999 1000 1001 1002
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1003
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1004

J
JiayiFeng 已提交
1005
    def all_attrs(self):
F
fengjiayi 已提交
1006
        """
1007 1008 1009
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1010
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1011 1012 1013 1014
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1015 1016
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1017
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1018 1019 1020
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1021
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1022 1023 1024 1025
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1026 1027
        return attr_map

Y
Yu Yang 已提交
1028

Y
Yu Yang 已提交
1029
class Block(object):
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1044
        use `Program._create_block()` to create a block.
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1059
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1060
        self.desc = program.desc.block(idx)
1061
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1062
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1063
        self.program = program
1064
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1065

1066
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1067 1068
        return self.to_string(True)

F
fengjiayi 已提交
1069 1070
    def to_string(self, throw_on_error, with_details=False):
        """
1071 1072
        Get debug string.

F
fengjiayi 已提交
1073 1074
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1075
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1076
            with_details(bool): more details about variables and parameters
1077 1078
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1079

1080 1081
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1082 1083 1084 1085
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1086
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1087 1088
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1089
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1090
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1091
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1092
            for op in self.ops:
F
fengjiayi 已提交
1093 1094
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1095 1096 1097
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1098 1099
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1100 1101
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1102 1103 1104

    __repr__ = __str__

Y
Yu Yang 已提交
1105 1106
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1107
        return self.desc.parent
Y
Yu Yang 已提交
1108

Y
Yu Yang 已提交
1109 1110 1111 1112
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1113
    def _set_forward_block_idx(self, idx):
1114 1115 1116 1117 1118 1119 1120 1121 1122
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1123
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1124

Y
Yu Yang 已提交
1125 1126
    @property
    def idx(self):
Y
Yu Yang 已提交
1127
        return self.desc.id
Y
Yu Yang 已提交
1128

Q
Qiao Longfei 已提交
1129
    def var(self, name):
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1143
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1144 1145 1146
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1147 1148
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1149
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1150
        return v
Q
Qiao Longfei 已提交
1151

X
Xin Pan 已提交
1152
    def _find_var_recursive(self, name):
1153 1154 1155 1156 1157 1158 1159
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1160
            Variable: the Variable with the giving name. Or None if not found.
1161
        """
Y
Yu Yang 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1186
        return None
Y
Yu Yang 已提交
1187

X
Xin Pan 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1207

Q
Qiao Longfei 已提交
1208
    def all_parameters(self):
1209
        return list(self.iter_parameters())
1210

1211
    def iter_parameters(self):
M
minqiyang 已提交
1212
        return (item[1] for item in six.iteritems(self.vars)
1213
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1214

Y
Yu Yang 已提交
1215
    def create_var(self, *args, **kwargs):
1216
        var = Variable(block=self, *args, **kwargs)
1217 1218
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1219
        return var
Y
Yu Yang 已提交
1220

Q
Qiao Longfei 已提交
1221 1222 1223
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1224
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1225 1226
        """
        Rename variable in vars and ops' inputs and outputs
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1239
        """
M
minqiyang 已提交
1240 1241
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1242

T
typhoonzero 已提交
1243
        if not self.has_var(name):
1244
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1245 1246
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1247
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1248 1249 1250 1251 1252 1253 1254
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1255
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1256 1257 1258 1259
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1260
        orig_var_type = v.type
M
minqiyang 已提交
1261
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1262
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1263
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1264
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1265 1266 1267 1268
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1269
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1270 1271 1272 1273 1274 1275 1276
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1277
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1278 1279
            var = Variable(
                self,
T
typhoonzero 已提交
1280
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1281 1282 1283 1284
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1285
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1286 1287 1288
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1289
        self._sync_with_cpp()
1290
        return var
T
typhoonzero 已提交
1291

W
Wu Yi 已提交
1292 1293
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1294
        self.desc._remove_var(cpt.to_bytes(name))
1295 1296
        del self.vars[name]

Y
Yu Yang 已提交
1297 1298
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1299
        param = Parameter(global_block, *args, **kwargs)
1300
        if 'initializer' in kwargs:
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1321
        return param
Y
Yu Yang 已提交
1322

Y
Yu Yang 已提交
1323
    def append_op(self, *args, **kwargs):
1324 1325 1326 1327 1328 1329
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1330
        op_desc = self.desc.append_op()
1331 1332 1333 1334 1335 1336 1337
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1338 1339 1340 1341 1342 1343

        if _in_imperative_mode():
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
            # currently, we only support stop_gradient in imperative mode.
M
minqiyang 已提交
1344 1345 1346 1347
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
            self.ops.append(op)
M
minqiyang 已提交
1348

1349 1350
        return op

W
Wu Yi 已提交
1351
    def _insert_op(self, index, *args, **kwargs):
1352 1353 1354 1355 1356 1357 1358 1359 1360
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1361 1362
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1363 1364 1365 1366
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1367
    def _remove_op(self, index):
1368 1369 1370 1371 1372 1373 1374 1375 1376
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1377 1378
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1379 1380
        del self.ops[index]

W
Wu Yi 已提交
1381
    def _slice_ops(self, start, end):
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1392
        return self.ops[start:end]
Y
Yancey1989 已提交
1393

W
Wu Yi 已提交
1394 1395
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1396 1397 1398 1399 1400 1401 1402
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1403
        if _in_imperative_mode():
M
minqiyang 已提交
1404 1405 1406 1407
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
            self.ops.insert(0, op)
Y
Yu Yang 已提交
1408 1409
        return op

W
Wu Yi 已提交
1410
    def _sync_with_cpp(self):
1411
        """
1412 1413
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1414
        """
Q
Qiao Longfei 已提交
1415 1416 1417 1418 1419
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1420
        # sync variables removed from c++ end
1421
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1422
            if not self.desc.find_var(cpt.to_bytes(var)):
1423 1424
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1425
        # sync operators from cpp
1426 1427 1428 1429
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1446 1447 1448 1449 1450

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1451
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1452 1453 1454 1455 1456 1457 1458

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1472 1473 1474 1475
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1476
    def _copy_param_info_from(self, other):
1477
        """
1478 1479
        Copy the information of parameters from the other block.

1480
        Args:
1481 1482 1483 1484 1485
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1486 1487 1488 1489 1490

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1491 1492
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1493
        for p in other.iter_parameters():
1494 1495 1496
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1497
                raise ValueError("_copy_param_info_from should be invoked with "
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1510
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1511
                error_clip=p.error_clip,
1512 1513 1514
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1515
    def _clone_variable(self, var):
1516 1517
        """
        Clone a variable into current block.
1518

1519 1520 1521 1522
        Args:
            var: the variable to be cloned.

        Returns:
1523
            Variable: the new  variable cloned from 'var' in current block.
1524 1525
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1526 1527 1528 1529 1530
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1531 1532
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1533
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1534 1535 1536 1537 1538 1539
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1540 1541
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1542 1543 1544 1545 1546 1547 1548
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1549 1550
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1551
        return ret_var
1552

Y
Yu Yang 已提交
1553

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

1649
    def remove_input_by_id(self, node_id):
1650 1651 1652 1653 1654 1655
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1656
        self.node.remove_input(node_id)
1657

1658
    def remove_input(self, node):
1659 1660 1661 1662
        """
        Remove a node from inputs.

        Args:
1663
            node(IrNode): the node being removed.
1664
        """
1665
        self.node.remove_input(node.node)
1666

1667
    def append_input(self, node):
1668 1669 1670 1671
        """
        Append a node in inputs.

        Args:
1672
            node(IrNode): the node being appended.
1673
        """
1674
        self.node.append_input(node.node)
1675 1676 1677 1678 1679 1680 1681 1682

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

1683
    def remove_output_by_id(self, node_id):
1684 1685 1686 1687 1688 1689
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1690
        self.node.remove_output(node_id)
1691

1692
    def remove_output(self, node):
1693 1694 1695 1696
        """
        Remove a node from outputs.

        Args:
1697
            node(IrNode): the node being removed.
1698
        """
1699
        self.node.remove_output(node.node)
1700

1701
    def append_output(self, node):
1702 1703 1704 1705
        """
        Append a node in outputs.

        Args:
1706
            node(IrNode): the node being appended.
1707
        """
1708
        self.node.append_output(node.node)
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


1941 1942
class IrGraph(object):
    """
1943
    Python IrGraph. Beneath it is a core.Graph, which is used for
1944
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
1945 1946
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1947 1948 1949 1950
    """

    def __init__(self, graph, for_test=False):
        """
1951 1952
        Construct an IrGraph using core.Graph.

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1963 1964 1965
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1966 1967
        return self._for_test

W
WangZhen 已提交
1968
    def all_nodes(self):
1969 1970 1971
        """
        Return all nodes included in the graph as a set.
        """
1972
        return {IrNode(node) for node in self.graph.nodes()}
1973

1974
    def all_var_nodes(self):
1975 1976 1977
        """
        Return all variable nodes included in the graph as a set.
        """
1978
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
1979

1980
    def all_persistable_nodes(self):
1981 1982 1983
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1984 1985 1986 1987 1988
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
1989
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
1990

1991
    def all_op_nodes(self):
1992 1993 1994
        """
        Return all operator nodes included in the graph as a set.
        """
1995
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
1996

W
WangZhen 已提交
1997 1998
    def var_node(self, name):
        """
1999 2000
        Get a variable node by name from the graph.

W
WangZhen 已提交
2001 2002
        Args:
            name(str): the name of the variable node.
2003

W
WangZhen 已提交
2004 2005 2006
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
2007

W
WangZhen 已提交
2008
        Returns:
2009
            IrVarNode: the variable node with the giving name.
W
WangZhen 已提交
2010 2011 2012 2013 2014 2015
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
2016
        var_nodes = self.all_var_nodes()
W
WangZhen 已提交
2017 2018 2019 2020 2021 2022 2023
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

2024
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2036
            IrVarNode: the created persistable variable node.
2037
        """
2038 2039 2040 2041 2042
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2043
        return IrVarNode(self.graph.create_var_node(var_desc))
2044 2045

    def create_var_node(self, name, var_type, shape, var_dtype):
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2057
            IrVarNode: the created variable node.
2058 2059
        """

2060 2061 2062 2063
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2064
        return IrVarNode(self.graph.create_var_node(var_desc))
2065 2066

    def create_var_node_from_desc(self, var_desc):
2067 2068 2069 2070 2071 2072 2073 2074
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2075
            IrVarNode: the created variable node.
2076
        """
2077
        return IrVarNode(self.graph.create_var_node(var_desc))
2078 2079

    def create_op_node(self, op_type, attrs, inputs, outputs):
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2090
            IrOpNode: the created operator node.
2091
        """
2092 2093
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2094
        for attr, value in six.iteritems(attrs):
2095
            self._update_desc_attr(op_desc, attr, value)
2096
        for input_name, var_nodes in six.iteritems(inputs):
2097 2098 2099 2100
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2101
        for output_name, var_nodes in six.iteritems(outputs):
2102 2103 2104 2105
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2106
        return IrOpNode(self.graph.create_op_node(op_desc))
2107 2108

    def create_op_node_from_desc(self, op_desc):
2109 2110 2111 2112 2113 2114 2115
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2116
            IrOpNode: the created operator node.
2117
        """
2118
        return IrOpNode(self.graph.create_op_node(op_desc))
2119 2120

    def update_input_link(self, old_input_node, new_input_node, op_node):
2121 2122 2123 2124
        """
        Update the input's link of a operator node.

        Args:
2125 2126 2127
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2128
        """
2129 2130
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2131
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2132 2133 2134 2135
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2136
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2137 2138

    def link_to(self, node_in, node_out):
2139 2140 2141 2142
        """
        Connect two nodes.

        Args:
2143 2144
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2145
        """
2146
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2147
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2148 2149
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2150 2151

    def safe_remove_nodes(self, remove_nodes):
2152 2153 2154 2155 2156 2157 2158
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2159
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2160 2161 2162 2163
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2164 2165
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2166

W
WangZhen 已提交
2167
    def has_circle(self):
2168 2169 2170 2171 2172 2173
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2174 2175 2176
        return core.has_circle(self.graph)

    def graph_num(self):
2177 2178 2179 2180 2181 2182
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2183 2184 2185
        return core.graph_num(self.graph)

    def topology_sort(self):
2186 2187 2188 2189 2190 2191
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
2192
            set(IrNode): nodes in topology order.
2193
        """
2194 2195
        ordered_nodes = core.topology_sort(self.graph)
        return {IrNode(n) for n in ordered_nodes}
W
WangZhen 已提交
2196 2197

    def build_adjacency_list(self):
2198 2199 2200 2201
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2202
            dict{IrNode: set(IrNode)}: the adjacency list.
2203
        """
2204 2205 2206 2207 2208
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2209

2210 2211 2212 2213 2214 2215 2216 2217
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2218
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2219 2220 2221 2222 2223
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2224 2225 2226 2227 2228 2229 2230 2231 2232
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2233
        remove_ctr_vars = set()
2234
        if remove_ctr_var:
2235
            for node in self.all_var_nodes():
2236 2237 2238
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2239 2240
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2241 2242
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2243 2244 2245 2246 2247 2248
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2270
        convert_pass = core.get_pass('graph_to_program_pass')
2271 2272
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2293
class Program(object):
D
dzhwinter 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2305
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2306 2307

    Returns:
Y
yuyang18 已提交
2308
        A empty program.
D
dzhwinter 已提交
2309 2310

    Examples:
Y
yuyang18 已提交
2311 2312 2313 2314 2315 2316
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
2317 2318 2319

    """

2320 2321
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2322 2323
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2324
        self._seed = 0
Y
yuyang18 已提交
2325
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
2326
        self._op_role_var = []
T
tangwei12 已提交
2327

2328 2329
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2330
        self._is_distributed = False
2331
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2332
        self._is_chief = False
2333 2334 2335
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2336
        self._endpoints = []
2337 2338 2339
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2340
        self._trainers_endpoints = []
2341
        # the distributed lookup table names
T
tangwei12 已提交
2342
        self._distributed_lookup_table = None
D
dzhwinter 已提交
2343
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2344
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2345
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2346 2347

    @property
D
dzhwinter 已提交
2348
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2349 2350
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2351
        return self.__is_mem_optimized
D
dzhwinter 已提交
2352

D
dzhwinter 已提交
2353 2354 2355
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2356 2357 2358

    @property
    def op_role(self):
Y
yuyang18 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2372 2373 2374
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
2375
    def op_role(self, role):
Y
yuyang18 已提交
2376 2377 2378 2379
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
2380 2381 2382 2383 2384 2385 2386
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2387 2388 2389 2390
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2391
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2392

S
rename  
sneaxiy 已提交
2393
    @signature_safe_contextmanager
W
Wu Yi 已提交
2394
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2395 2396 2397 2398 2399 2400 2401
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2402
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2403 2404 2405 2406

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2407
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2408 2409
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2410 2411 2412
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2413 2414
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2415 2416 2417 2418
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2419
        yield
X
Xin Pan 已提交
2420 2421
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2422

S
rename  
sneaxiy 已提交
2423
    @signature_safe_contextmanager
X
Xin Pan 已提交
2424
    def _lr_schedule_guard(self, is_with_opt=False):
2425 2426 2427 2428 2429 2430 2431
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2432 2433 2434 2435
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2436 2437 2438 2439 2440 2441 2442

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2443 2444 2445 2446

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2447 2448
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2449 2450
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2451 2452 2453
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2454 2455
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2456

2457
    def __str__(self):
Y
yuyang18 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2467 2468
        return self.to_string(True)

F
fengjiayi 已提交
2469 2470 2471
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2472

F
fengjiayi 已提交
2473
        Args:
Y
yuyang18 已提交
2474 2475
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2476

Y
yuyang18 已提交
2477 2478 2479 2480
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2481 2482
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2483 2484 2485 2486

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2497 2498
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2499 2500
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2501

W
Wu Yi 已提交
2502
    def _get_desc(self):
Y
yuyang18 已提交
2503 2504 2505 2506 2507 2508 2509
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2510 2511
        return self.desc

X
version  
Xin Pan 已提交
2512 2513 2514
    def _version(self):
        return self.desc._version()

2515
    def clone(self, for_test=False):
Y
yuyang18 已提交
2516 2517 2518
        """
        Create a new, duplicated program.

2519

Y
yuyang18 已提交
2520 2521 2522 2523
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2524

Y
yuyang18 已提交
2525 2526 2527 2528
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2529 2530 2531 2532 2533
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2534 2535

        Args:
Y
yuyang18 已提交
2536 2537
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2538

D
dzhwinter 已提交
2539
        Returns:
Y
yuyang18 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2593 2594
        """
        if for_test:
X
Xin Pan 已提交
2595
            p = self._inference_optimize(prune_read_op=False)
2596
        else:
2597
            p = Program()
G
gongweibao 已提交
2598 2599
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2600
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2601 2602 2603
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2604 2605 2606 2607

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2608
            p._sync_with_cpp()
2609

W
Wu Yi 已提交
2610
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2611
        p._copy_data_info_from(self)
2612
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2613
        return p
2614

W
Wu Yi 已提交
2615
    def _prune(self, targets):
Y
yuyang18 已提交
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2631 2632 2633 2634 2635 2636
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2637 2638
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2639
                    # and we need to find the current op that generate this
2640 2641 2642 2643 2644 2645 2646 2647
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2648
                    t = t.op
2649 2650 2651 2652
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2653
                else:
2654 2655
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2656 2657 2658 2659

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2660 2661 2662
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2663
        res._sync_with_cpp()
2664 2665
        return res

X
Xin Pan 已提交
2666
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2667
        """
F
fengjiayi 已提交
2668 2669 2670 2671 2672
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2673
        3. change the :code:`is_test`
Y
yuyang18 已提交
2674 2675 2676
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2677
        Args:
X
Xin Pan 已提交
2678 2679
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2680

Y
yuyang18 已提交
2681 2682 2683 2684 2685 2686
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2687
        res = Program()
2688
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2689 2690 2691 2692

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2693
        if prune_read_op:
2694 2695 2696 2697 2698 2699 2700 2701 2702
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2703
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2704 2705

        # change all `is_test` attributes to True
M
minqiyang 已提交
2706
        for i in six.moves.range(res.desc.num_blocks()):
2707
            block = res.desc.block(i)
M
minqiyang 已提交
2708
            for j in six.moves.range(block.op_size()):
2709 2710
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2711
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2712 2713 2714
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2715
        res._sync_with_cpp()
2716 2717
        return res

2718 2719
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2720 2721 2722 2723 2724 2725 2726
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2727
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2728 2729 2730 2731

        Returns:
            Program: A deserialized program desc.
        """
2732 2733
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2734
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2735
        p._sync_with_cpp()
2736
        return p
Y
Yu Yang 已提交
2737

2738
    @staticmethod
2739
    def _construct_from_desc(desc):
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2755 2756
    @property
    def random_seed(self):
Y
yuyang18 已提交
2757 2758 2759 2760 2761 2762
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2763 2764
        return self._seed

Q
qiaolongfei 已提交
2765 2766
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2767 2768 2769
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2770 2771
        return self.desc.num_blocks()

D
dzhwinter 已提交
2772 2773 2774 2775 2776 2777
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2778
    def __repr__(self):
2779
        return self.__str__()
2780

Y
Yu Yang 已提交
2781
    def global_block(self):
Y
yuyang18 已提交
2782 2783 2784
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2785 2786
        return self.blocks[0]

Q
Qiao Longfei 已提交
2787
    def block(self, index):
Y
yuyang18 已提交
2788 2789 2790 2791 2792 2793 2794 2795
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2796 2797
        return self.blocks[index]

Y
Yu Yang 已提交
2798
    def current_block(self):
Y
yuyang18 已提交
2799 2800 2801 2802
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2803 2804
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2805
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2816
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2817 2818 2819
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2820 2821 2822 2823
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2824
    def _rollback(self):
Y
yuyang18 已提交
2825 2826 2827 2828 2829
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2830 2831
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2832
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2843 2844 2845
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2846
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2847

W
Wu Yi 已提交
2848
    def _copy_param_info_from(self, other):
2849
        """
2850
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2851

Y
yuyang18 已提交
2852 2853 2854
        Notes: This is a very low level API. Users should not invoke it
        directly.

2855 2856 2857 2858 2859 2860 2861
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2862
            raise TypeError("_copy_param_info_from should be invoked with "
2863 2864 2865
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2866
            raise ValueError("_copy_param_info_from should be invoked with two "
2867
                             "program, with represent the same topology")
W
Wu Yi 已提交
2868
        self.global_block()._copy_param_info_from(other.global_block())
2869

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2885
        self._parameters_on_pservers = other._parameters_on_pservers
2886
        self._endpoints = other._endpoints
2887
        self._ps_endpoint = other._ps_endpoint
2888 2889
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2890
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2891 2892
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2893

Y
yuyang18 已提交
2894 2895 2896
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2897 2898 2899 2900 2901 2902 2903
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2904
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2905 2906 2907
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2908
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2909
                             "program, with represent the same topology")
2910
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2911 2912 2913
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2914
    def list_vars(self):
Y
yuyang18 已提交
2915 2916 2917 2918 2919 2920
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2921
        for each_block in self.blocks:
2922
            for each_var in list(each_block.vars.values()):
2923 2924
                yield each_var

Y
Yu Yang 已提交
2925

Y
Yu Yang 已提交
2926
class Parameter(Variable):
2927
    """
2928
    Parameter is derived from Variable. A parameter is a persistable
2929
    Variable, and will be updated by optimizers after each iteration.
2930
    The training of a neural network is essentially the updating of
2931 2932
    its parameters.

2933
    Relative to a general Variable, a Parameter has several its own
2934 2935
    member variables:

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2948 2949
    """

Y
Yu Yang 已提交
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2960 2961 2962

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2963 2964 2965 2966
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2967 2968
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2969
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2970

W
wanghaoshuang 已提交
2971
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2972

F
fengjiayi 已提交
2973 2974 2975
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2976 2977 2978
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2979

F
update  
fengjiayi 已提交
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2994
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2995
            for attr_name in additional_attr:
2996 2997
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2998 2999
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3000 3001 3002 3003
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3004

Y
Yu Yang 已提交
3005
# program is a global instance.
Y
Yu Yang 已提交
3006 3007
_main_program_ = Program()
_startup_program_ = Program()
3008

3009

3010
def default_startup_program():
Y
Yu Yang 已提交
3011
    """
Y
yuyang18 已提交
3012 3013 3014 3015 3016 3017 3018 3019 3020
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3021

Y
Yu Yang 已提交
3022 3023 3024
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
3025
    return _startup_program_
3026

3027

3028
def default_main_program():
Y
Yu Yang 已提交
3029
    """
Y
yuyang18 已提交
3030 3031 3032 3033 3034 3035 3036 3037 3038
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3039

Y
Yu Yang 已提交
3040 3041 3042
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
3043
    return _main_program_
Y
Yu Yang 已提交
3044 3045 3046 3047 3048


def switch_main_program(program):
    """
    Switch the main program to a new program.
3049

Y
Yu Yang 已提交
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3064
    Switch the startup program to a new program
Y
Yu Yang 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3077
@signature_safe_contextmanager
Y
Yu Yang 已提交
3078 3079
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
3080 3081 3082
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
3083

Y
Yu Yang 已提交
3084
    Examples:
Y
yuyang18 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3095

Y
Yu Yang 已提交
3096
    Examples:
Y
yuyang18 已提交
3097 3098 3099 3100 3101 3102

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
3103

Y
Yu Yang 已提交
3104
    Args:
Y
yuyang18 已提交
3105
        main_program(Program): New main program inside `with` statement.
3106
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3120 3121


W
Wu Yi 已提交
3122
def _get_var(name, program=None):
X
xuwei06 已提交
3123
    """
Y
yuyang18 已提交
3124
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3125

X
xuwei06 已提交
3126 3127 3128
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3129
        If None, default_global_program() will be used.
X
xuwei06 已提交
3130 3131 3132 3133 3134 3135 3136

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3137
    assert isinstance(program, Program)
X
xuwei06 已提交
3138 3139

    return program.global_block().var(name)
3140 3141


S
rename  
sneaxiy 已提交
3142
@signature_safe_contextmanager
3143 3144 3145 3146
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
3147

3148
    yield
P
Paddle CI 已提交
3149

3150
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
3151 3152


S
rename  
sneaxiy 已提交
3153
@signature_safe_contextmanager
P
Paddle CI 已提交
3154
def _imperative_place_guard(place):
M
minqiyang 已提交
3155 3156 3157
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
3158

3159
    yield
M
minqiyang 已提交
3160

M
minqiyang 已提交
3161
    _imperative_current_expected_place_ = tmp_place