post_quant.py 2.7 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys

C
chenxujun 已提交
22
# add python path of PaddleDetection to sys.path
G
Guanghua Yu 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

# ignore warning log
import warnings
warnings.filterwarnings('ignore')

import paddle

from ppdet.core.workspace import load_config, merge_config
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.cli import ArgsParser
from ppdet.engine import Trainer
from ppdet.slim import build_slim_model

from ppdet.utils.logger import setup_logger
logger = setup_logger('post_quant')


def parse_args():
    parser = ArgsParser()
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output_inference",
        help="Directory for storing the output model files.")
    parser.add_argument(
        "--slim_config",
        default=None,
        type=str,
        help="Configuration file of slim method.")
    args = parser.parse_args()
    return args


def run(FLAGS, cfg):
    # build detector
    trainer = Trainer(cfg, mode='eval')

    # load weights
    if cfg.architecture in ['DeepSORT']:
        if cfg.det_weights != 'None':
            trainer.load_weights_sde(cfg.det_weights, cfg.reid_weights)
        else:
            trainer.load_weights_sde(None, cfg.reid_weights)
    else:
        trainer.load_weights(cfg.weights)

    # post quant model
    trainer.post_quant(FLAGS.output_dir)


def main():
    FLAGS = parse_args()
    cfg = load_config(FLAGS.config)
    # TODO: to be refined in the future
    if 'norm_type' in cfg and cfg['norm_type'] == 'sync_bn':
        FLAGS.opt['norm_type'] = 'bn'
    merge_config(FLAGS.opt)

    if FLAGS.slim_config:
        cfg = build_slim_model(cfg, FLAGS.slim_config, mode='test')

    # FIXME: Temporarily solve the priority problem of FLAGS.opt
    merge_config(FLAGS.opt)
    check_config(cfg)
89 90
    if 'use_gpu' not in cfg:
        cfg.use_gpu = False
G
Guanghua Yu 已提交
91
    check_gpu(cfg.use_gpu)
W
wangguanzhong 已提交
92
    check_version()
G
Guanghua Yu 已提交
93 94 95 96 97 98

    run(FLAGS, cfg)


if __name__ == '__main__':
    main()