log_parser_excel.py 11.7 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import argparse
import pandas as pd


def parse_args():
    """
    parse input args
    """
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--log_path",
        type=str,
        default="./output_pipeline",
        help="benchmark log path")
    parser.add_argument(
        "--output_name",
        type=str,
        default="benchmark_excel.xlsx",
        help="output excel file name")
    parser.add_argument(
        "--analysis_trt", dest="analysis_trt", action='store_true')
    parser.add_argument(
        "--analysis_mkl", dest="analysis_mkl", action='store_true')
    return parser.parse_args()


def find_all_logs(path_walk):
    """
    find all .log files from target dir
    """
    for root, ds, files in os.walk(path_walk):
        for file_name in files:
            if re.match(r'.*.log', file_name):
                full_path = os.path.join(root, file_name)
                yield file_name, full_path


def process_log(file_name):
    """
    process log to dict
    """
    output_dict = {}
    with open(file_name, 'r') as f:
        for i, data in enumerate(f.readlines()):
            if i == 0:
                continue
            line_lists = data.split(" ")

            # conf info
            if "runtime_device:" in line_lists:
                pos_buf = line_lists.index("runtime_device:")
                output_dict["runtime_device"] = line_lists[pos_buf + 1].strip()
            if "ir_optim:" in line_lists:
                pos_buf = line_lists.index("ir_optim:")
                output_dict["ir_optim"] = line_lists[pos_buf + 1].strip()
            if "enable_memory_optim:" in line_lists:
                pos_buf = line_lists.index("enable_memory_optim:")
                output_dict["enable_memory_optim"] = line_lists[pos_buf +
                                                                1].strip()
            if "enable_tensorrt:" in line_lists:
                pos_buf = line_lists.index("enable_tensorrt:")
                output_dict["enable_tensorrt"] = line_lists[pos_buf + 1].strip()
            if "precision:" in line_lists:
                pos_buf = line_lists.index("precision:")
                output_dict["precision"] = line_lists[pos_buf + 1].strip()
            if "enable_mkldnn:" in line_lists:
                pos_buf = line_lists.index("enable_mkldnn:")
                output_dict["enable_mkldnn"] = line_lists[pos_buf + 1].strip()
            if "cpu_math_library_num_threads:" in line_lists:
                pos_buf = line_lists.index("cpu_math_library_num_threads:")
                output_dict["cpu_math_library_num_threads"] = line_lists[
                    pos_buf + 1].strip()

            # model info
            if "model_name:" in line_lists:
                pos_buf = line_lists.index("model_name:")
                output_dict["model_name"] = list(
                    filter(None, line_lists[pos_buf + 1].strip().split('/')))[
                        -1]

            # data info
            if "batch_size:" in line_lists:
                pos_buf = line_lists.index("batch_size:")
                output_dict["batch_size"] = line_lists[pos_buf + 1].strip()
            if "input_shape:" in line_lists:
                pos_buf = line_lists.index("input_shape:")
                output_dict["input_shape"] = line_lists[pos_buf + 1].strip()

            # perf info
            if "cpu_rss(MB):" in line_lists:
                pos_buf = line_lists.index("cpu_rss(MB):")
                output_dict["cpu_rss(MB)"] = line_lists[pos_buf + 1].strip(
                ).split(',')[0]
            if "gpu_rss(MB):" in line_lists:
                pos_buf = line_lists.index("gpu_rss(MB):")
                output_dict["gpu_rss(MB)"] = line_lists[pos_buf + 1].strip(
                ).split(',')[0]
            if "gpu_util:" in line_lists:
                pos_buf = line_lists.index("gpu_util:")
                output_dict["gpu_util"] = line_lists[pos_buf + 1].strip().split(
                    ',')[0]
            if "preproce_time(ms):" in line_lists:
                pos_buf = line_lists.index("preproce_time(ms):")
                output_dict["preproce_time(ms)"] = line_lists[
                    pos_buf + 1].strip().split(',')[0]
            if "inference_time(ms):" in line_lists:
                pos_buf = line_lists.index("inference_time(ms):")
                output_dict["inference_time(ms)"] = line_lists[
                    pos_buf + 1].strip().split(',')[0]
            if "postprocess_time(ms):" in line_lists:
                pos_buf = line_lists.index("postprocess_time(ms):")
                output_dict["postprocess_time(ms)"] = line_lists[
                    pos_buf + 1].strip().split(',')[0]
    return output_dict


def filter_df_merge(cpu_df, filter_column=None):
    """
    process cpu data frame, merge by 'model_name', 'batch_size'
    Args:
        cpu_df ([type]): [description]
    """
    if not filter_column:
        raise Exception(
            "please assign filter_column for filter_df_merge function")

    df_lists = []
    filter_column_lists = []
    for k, v in cpu_df.groupby(filter_column, dropna=True):
        filter_column_lists.append(k)
        df_lists.append(v)
    final_output_df = df_lists[-1]

    # merge same model
    for i in range(len(df_lists) - 1):
        left_suffix = cpu_df[filter_column].unique()[0]
        right_suffix = df_lists[i][filter_column].unique()[0]
        print(left_suffix, right_suffix)
        if not pd.isnull(right_suffix):
            final_output_df = pd.merge(
                final_output_df,
                df_lists[i],
                how='left',
                left_on=['model_name', 'batch_size'],
                right_on=['model_name', 'batch_size'],
                suffixes=('', '_{0}_{1}'.format(filter_column, right_suffix)))

    # rename default df columns
    origin_column_names = list(cpu_df.columns.values)
    origin_column_names.remove(filter_column)
    suffix = final_output_df[filter_column].unique()[0]
    for name in origin_column_names:
        final_output_df.rename(
            columns={name: "{0}_{1}_{2}".format(name, filter_column, suffix)},
            inplace=True)
    final_output_df.rename(
        columns={
            filter_column: "{0}_{1}_{2}".format(filter_column, filter_column,
                                                suffix)
        },
        inplace=True)

    final_output_df.sort_values(
        by=[
            "model_name_{0}_{1}".format(filter_column, suffix),
            "batch_size_{0}_{1}".format(filter_column, suffix)
        ],
        inplace=True)
    return final_output_df


def trt_perf_analysis(raw_df):
    """
    sperate raw dataframe to a list of dataframe
    compare tensorrt percision performance
    """
    # filter df by gpu, compare tensorrt and gpu
    # define default dataframe for gpu performance analysis
    gpu_df = raw_df.loc[raw_df['runtime_device'] == 'gpu']
    new_df = filter_df_merge(gpu_df, "precision")

C
chenxujun 已提交
198
    # calculate qps diff percentile
G
Guanghua Yu 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    infer_fp32 = "inference_time(ms)_precision_fp32"
    infer_fp16 = "inference_time(ms)_precision_fp16"
    infer_int8 = "inference_time(ms)_precision_int8"
    new_df["fp32_fp16_diff"] = new_df[[infer_fp32, infer_fp16]].apply(
        lambda x: (float(x[infer_fp16]) - float(x[infer_fp32])) / float(x[infer_fp32]),
        axis=1)
    new_df["fp32_gpu_diff"] = new_df[["inference_time(ms)", infer_fp32]].apply(
        lambda x: (float(x[infer_fp32]) - float(x[infer_fp32])) / float(x["inference_time(ms)"]),
        axis=1)
    new_df["fp16_int8_diff"] = new_df[[infer_fp16, infer_int8]].apply(
        lambda x: (float(x[infer_int8]) - float(x[infer_fp16])) / float(x[infer_fp16]),
        axis=1)

    return new_df


def mkl_perf_analysis(raw_df):
    """
    sperate raw dataframe to a list of dataframe
    compare mkldnn performance with not enable mkldnn
    """
    # filter df by cpu, compare mkl and cpu
    # define default dataframe for cpu mkldnn analysis
    cpu_df = raw_df.loc[raw_df['runtime_device'] == 'cpu']
    mkl_compare_df = cpu_df.loc[cpu_df['cpu_math_library_num_threads'] == '1']
    thread_compare_df = cpu_df.loc[cpu_df['enable_mkldnn'] == 'True']

    # define dataframe need to be analyzed
    output_mkl_df = filter_df_merge(mkl_compare_df, 'enable_mkldnn')
    output_thread_df = filter_df_merge(thread_compare_df,
                                       'cpu_math_library_num_threads')

C
chenxujun 已提交
231
    # calculate performance diff percentile
G
Guanghua Yu 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    # compare mkl performance with cpu
    enable_mkldnn = "inference_time(ms)_enable_mkldnn_True"
    disable_mkldnn = "inference_time(ms)_enable_mkldnn_False"
    output_mkl_df["mkl_infer_diff"] = output_mkl_df[[
        enable_mkldnn, disable_mkldnn
    ]].apply(
        lambda x: (float(x[enable_mkldnn]) - float(x[disable_mkldnn])) / float(x[disable_mkldnn]),
        axis=1)
    cpu_enable_mkldnn = "cpu_rss(MB)_enable_mkldnn_True"
    cpu_disable_mkldnn = "cpu_rss(MB)_enable_mkldnn_False"
    output_mkl_df["mkl_cpu_rss_diff"] = output_mkl_df[[
        cpu_enable_mkldnn, cpu_disable_mkldnn
    ]].apply(
        lambda x: (float(x[cpu_enable_mkldnn]) - float(x[cpu_disable_mkldnn])) / float(x[cpu_disable_mkldnn]),
        axis=1)

    # compare cpu_multi_thread performance with cpu
    num_threads_1 = "inference_time(ms)_cpu_math_library_num_threads_1"
    num_threads_6 = "inference_time(ms)_cpu_math_library_num_threads_6"
    output_thread_df["mkl_infer_diff"] = output_thread_df[[
        num_threads_6, num_threads_1
    ]].apply(
        lambda x: (float(x[num_threads_6]) - float(x[num_threads_1])) / float(x[num_threads_1]),
        axis=1)
    cpu_num_threads_1 = "cpu_rss(MB)_cpu_math_library_num_threads_1"
    cpu_num_threads_6 = "cpu_rss(MB)_cpu_math_library_num_threads_6"
    output_thread_df["mkl_cpu_rss_diff"] = output_thread_df[[
        cpu_num_threads_6, cpu_num_threads_1
    ]].apply(
        lambda x: (float(x[cpu_num_threads_6]) - float(x[cpu_num_threads_1])) / float(x[cpu_num_threads_1]),
        axis=1)

    return output_mkl_df, output_thread_df


def main():
    """
    main
    """
    args = parse_args()
    # create empty DataFrame
    origin_df = pd.DataFrame(columns=[
        "model_name", "batch_size", "input_shape", "runtime_device", "ir_optim",
        "enable_memory_optim", "enable_tensorrt", "precision", "enable_mkldnn",
        "cpu_math_library_num_threads", "preproce_time(ms)",
        "inference_time(ms)", "postprocess_time(ms)", "cpu_rss(MB)",
        "gpu_rss(MB)", "gpu_util"
    ])

    for file_name, full_path in find_all_logs(args.log_path):
        dict_log = process_log(full_path)
        origin_df = origin_df.append(dict_log, ignore_index=True)

    raw_df = origin_df.sort_values(by='model_name')
    raw_df.sort_values(by=["model_name", "batch_size"], inplace=True)
    raw_df.to_excel(args.output_name)

    if args.analysis_trt:
        trt_df = trt_perf_analysis(raw_df)
        trt_df.to_excel("trt_analysis_{}".format(args.output_name))

    if args.analysis_mkl:
        mkl_df, thread_df = mkl_perf_analysis(raw_df)
        mkl_df.to_excel("mkl_enable_analysis_{}".format(args.output_name))
        thread_df.to_excel("mkl_threads_analysis_{}".format(args.output_name))


if __name__ == "__main__":
    main()