test.cc 21.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
23
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
24

T
tensor-tang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

template <typename T>
void ExpectEQ(const T* target, const T* refer, int n) {
  if (std::is_floating_point<T>::value) {
    for (int i = 0; i < n; ++i) {
40
      EXPECT_NEAR(target[i], refer[i], 1e-5);
T
tensor-tang 已提交
41 42 43 44 45 46 47 48
    }
  } else {
    for (int i = 0; i < n; ++i) {
      EXPECT_EQ(target[i], refer[i]);
    }
  }
}

T
tensor-tang 已提交
49 50
std::vector<int> TestSizes() {
  std::vector<int> s;
T
tensor-tang 已提交
51
  for (int i = 1; i < 32; ++i) {
T
tensor-tang 已提交
52 53
    s.push_back(i);
  }
T
tensor-tang 已提交
54 55 56 57
  // test some large size
  s.push_back(100);
  s.push_back(1000);
  s.push_back(2000);
T
tensor-tang 已提交
58 59 60
  return s;
}

T
tensor-tang 已提交
61 62 63 64 65 66 67 68 69 70 71
namespace jit = paddle::operators::jit;

template <typename KernelTuples, typename... Args>
struct TestFuncWithRefer {
  void operator()(const typename KernelTuples::func_type tgt, Args... args) {}
};

template <typename T>
struct TestFuncWithRefer<jit::XYZNTuples<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>> {
  void operator()(const typename jit::XYZNTuples<T>::func_type tgt,
72 73
                  const std::vector<T>& x, const std::vector<T>& y,
                  const std::vector<T>& zref) {
T
tensor-tang 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(zref.size(), x.size());
    EXPECT_EQ(zref.size(), y.size());
    const T* x_data = x.data();
    const T* y_data = y.data();
    const T* zref_data = zref.data();
    const int d = zref.size();

    std::vector<T> ztgt(d);
    T* ztgt_data = ztgt.data();
    // test normal
    tgt(x_data, y_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ztgt.begin());
    tgt(ztgt_data, y_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
    // test inplace y
    std::copy(y.begin(), y.end(), ztgt.begin());
    tgt(x_data, ztgt_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::AXYNTuples<T>, T, std::vector<T>,
                         std::vector<T>> {
  void operator()(const typename jit::AXYNTuples<T>::func_type tgt, const T a,
                  const std::vector<T>& x, const std::vector<T>& yref) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    const int d = yref.size();
    std::vector<T> ytgt(d);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(&a, x_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(&a, ytgt_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::XYNTuples<T>, std::vector<T>, std::vector<T>> {
  void operator()(const typename jit::XYNTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    const int d = yref.size();
    std::vector<T> ytgt(d);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(x_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(ytgt_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::LSTMTuples<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>, std::vector<T>, std::vector<T>> {
  void operator()(const typename jit::LSTMTuples<T>::func_type tgt,
                  const std::vector<T>& xsrc, const std::vector<T>& wp,
                  const std::vector<T>& ct_1, const std::vector<T>& ct_ref,
                  const std::vector<T>& ht_ref,
                  const typename jit::LSTMTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(ct_ref.size(), ht_ref.size());
    EXPECT_EQ(ct_1.size(), ht_ref.size());
    EXPECT_EQ(xsrc.size(), 4 * ht_ref.size());
    EXPECT_EQ(wp.size(), 3 * ht_ref.size());

    // x could be changed after compute, so copy to save src
    int d = ht_ref.size();
    std::vector<T> x(xsrc.size()), ct(ct_ref.size()), ht(ht_ref.size());
    std::vector<T> checked(2 * d);
    std::copy(xsrc.begin(), xsrc.end(), x.begin());

    const T* ct_1_data = ct_1.data();
    const T* wp_data = wp.data();
    const T* ct_ref_data = ct_ref.data();
    const T* ht_ref_data = ht_ref.data();
    T* x_data = x.data();
    T* ct_data = ct.data();
    T* ht_data = ht.data();
    T* checked_data = checked.data();

    paddle::operators::jit::lstm_t step;
    step.gates = x_data;
    step.ct_1 = ct_1_data;
    step.ct = ct_data;
    step.ht = ht_data;
    if (attr.use_peephole) {
      step.wp = wp_data;
      step.checked = checked_data;
    }

    tgt(&step, &attr);
    ExpectEQ<T>(ct_data, ct_ref_data, d);
    ExpectEQ<T>(ht_data, ht_ref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::GRUTuples<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>> {
  void operator()(const typename jit::GRUTuples<T>::func_type tgt,
                  const std::vector<T>& xsrc, const std::vector<T>& ht_1,
                  const std::vector<T>& ht_ref,
                  const typename jit::GRUTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(ht_1.size(), ht_ref.size());
    EXPECT_EQ(xsrc.size(), 3 * ht_ref.size());

    // x could be changed after compute, so copy to save src
    int d = ht_ref.size();
    std::vector<T> x(xsrc.size()), ht(ht_ref.size());
    std::copy(xsrc.begin(), xsrc.end(), x.begin());
    const T* ht_1_data = ht_1.data();
    const T* ht_ref_data = ht_ref.data();
    T* x_data = x.data();
    T* ht_data = ht.data();
    paddle::operators::jit::gru_t step;
    step.gates = x_data;
    step.ht_1 = ht_1_data;
    step.ht = ht_data;
    tgt(&step, &attr);
    ExpectEQ<T>(ht_data, ht_ref_data, d);
  }
};

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
template <typename T>
struct TestFuncWithRefer<jit::SeqPoolTuples<T>, std::vector<T>,
                         std::vector<T>> {
  void operator()(const typename jit::SeqPoolTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref,
                  const typename jit::SeqPoolTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(x.size() % yref.size(), 0);
    int w = yref.size();
    std::vector<T> y(w);
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    T* y_data = y.data();
    tgt(x_data, y_data, &attr);
    ExpectEQ<T>(y_data, yref_data, w);
  }
};

T
tensor-tang 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
template <paddle::operators::jit::KernelType KT, typename KernelTuples,
          typename PlaceType, typename... Args>
void TestAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
  TestFuncWithRefer<KernelTuples, Args...> test;
  // test jitcode
  auto jitcode = jit::GetJitCode<KT, KernelTuples, PlaceType>(attr);
  if (jitcode) {
    VLOG(10) << "Test Jitcode Kernel ";
    test(jitcode, args...);
  }
  // test all impls in more
  jit::KernelKey kkey(KT, PlaceType());
  auto& pool = jit::KernelPool().Instance().AllKernels();
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
    auto& impls = iter->second;
    for (auto& impl : impls) {
T
tensor-tang 已提交
249
      auto i = dynamic_cast<const jit::KernelMore<KernelTuples>*>(impl.get());
T
tensor-tang 已提交
250 251
      if (i && i->UseMe(attr)) {
        auto more = i->GetFunc();
T
tensor-tang 已提交
252
        VLOG(10) << "Test More Kernel : " << i->ImplType();
T
tensor-tang 已提交
253 254 255 256 257
        test(more, args...);
      }
    }
  }
  // test result from Get function
T
tensor-tang 已提交
258
  // VLOG(10) << "Test Get function ";
T
tensor-tang 已提交
259 260
  auto tgt = jit::Get<KT, KernelTuples, PlaceType>(attr);
  test(tgt, args...);
T
tensor-tang 已提交
261 262
}

263 264
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestXYZNKernel() {
T
tensor-tang 已提交
265
  namespace jit = paddle::operators::jit;
266
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
T
tensor-tang 已提交
267
  for (int d : TestSizes()) {
268
    auto ref = jit::GetRefer<KT, jit::XYZNTuples<T>>();
T
tensor-tang 已提交
269 270
    EXPECT_TRUE(ref != nullptr);

T
tensor-tang 已提交
271
    std::vector<T> x(d), y(d), zref(d);
T
tensor-tang 已提交
272 273 274
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());

T
tensor-tang 已提交
275 276 277 278 279 280 281 282 283 284 285
    std::vector<T> xinp(d), yinp(d);  // inplace test
    std::copy(x.begin(), x.end(), xinp.begin());
    std::copy(y.begin(), y.end(), yinp.begin());

    const T* x_data = x.data();
    const T* y_data = y.data();
    T* zref_data = zref.data();
    T* xinp_data = xinp.data();
    T* yinp_data = yinp.data();

    // test refer code inplace
T
tensor-tang 已提交
286
    ref(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
287 288 289 290 291
    ref(x_data, yinp_data, yinp_data, d);
    ref(xinp_data, y_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, zref_data, d);
    ExpectEQ<T>(yinp_data, zref_data, d);

T
tensor-tang 已提交
292 293
    TestAllImpls<KT, jit::XYZNTuples<T>, PlaceType, std::vector<T>,
                 std::vector<T>, std::vector<T>>(d, x, y, zref);
T
tensor-tang 已提交
294 295
  }
}
T
tensor-tang 已提交
296

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestAXYNKernel() {
  namespace jit = paddle::operators::jit;
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::AXYNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);

    const T a = static_cast<T>(3);
    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
    RandomVec<T>(d, x.data());
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(&a, x_data, yref_data, d);
    ref(&a, xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);

T
tensor-tang 已提交
319 320
    TestAllImpls<KT, jit::AXYNTuples<T>, PlaceType, T, std::vector<T>,
                 std::vector<T>>(d, a, x, yref);
321 322 323
  }
}

324 325 326 327 328 329 330 331 332 333
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestXYNKernel() {
  namespace jit = paddle::operators::jit;
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::XYNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);

    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
334
    RandomVec<T>(d, x.data(), -2.f, 2.f);
335 336 337 338 339 340 341 342 343 344
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(x_data, yref_data, d);
    ref(xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);

T
tensor-tang 已提交
345 346
    TestAllImpls<KT, jit::XYNTuples<T>, PlaceType, std::vector<T>,
                 std::vector<T>>(d, x, yref);
347 348 349
  }
}

T
tensor-tang 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestLSTMKernel() {
  namespace jit = paddle::operators::jit;
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
  for (int d : TestSizes()) {
    for (bool use_peephole : {true, false}) {
      for (auto& act_gate : all_acts) {
        for (auto& act_cand : all_acts) {
          for (auto& act_cell : all_acts) {
            const jit::lstm_attr_t attr(
                d, jit::to_kerneltype(act_gate), jit::to_kerneltype(act_cand),
                jit::to_kerneltype(act_cell), use_peephole);
            auto ref = jit::GetRefer<KT, jit::LSTMTuples<T>>();
            EXPECT_TRUE(ref != nullptr);
            std::vector<T> xsrc(4 * d), wp(3 * d), ct_1(d);
            std::vector<T> ct_ref(d), ht_ref(d), checked(2 * d);
            RandomVec<T>(4 * d, xsrc.data(), -2.f, 2.f);
            RandomVec<T>(3 * d, wp.data(), -2.f, 2.f);
            RandomVec<T>(d, ct_1.data(), -2.f, 2.f);
            // x could be changed after compute, so copy to save src
            std::vector<T> x(xsrc.size());
            std::copy(xsrc.begin(), xsrc.end(), x.begin());
            const T* ct_1_data = ct_1.data();
            const T* wp_data = wp.data();
            T* x_data = x.data();
            T* checked_data = checked.data();
            T* ct_ref_data = ct_ref.data();
            T* ht_ref_data = ht_ref.data();
            jit::lstm_t step;
            step.gates = x_data;
            step.ct_1 = ct_1_data;
            step.ct = ct_ref_data;
            step.ht = ht_ref_data;
            if (use_peephole) {
              step.wp = wp_data;
              step.checked = checked_data;
            }
            ref(&step, &attr);
T
tensor-tang 已提交
389
            VLOG(10) << attr;
T
tensor-tang 已提交
390 391 392 393
            TestAllImpls<KT, jit::LSTMTuples<T>, PlaceType, std::vector<T>,
                         std::vector<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>>(attr, xsrc, wp, ct_1, ct_ref, ht_ref,
                                         attr);
T
tensor-tang 已提交
394 395 396 397 398 399 400
          }
        }
      }
    }
  }
}

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestGRUKernel() {
  namespace jit = paddle::operators::jit;
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
  for (int d : TestSizes()) {
    for (auto& act_gate : all_acts) {
      for (auto& act_cand : all_acts) {
        const jit::gru_attr_t attr(d, jit::to_kerneltype(act_gate),
                                   jit::to_kerneltype(act_cand));
        auto ref = jit::GetRefer<KT, jit::GRUTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> xsrc(3 * d), ht_1(d), ht_ref(d);
        RandomVec<T>(3 * d, xsrc.data(), -2.f, 2.f);
        RandomVec<T>(d, ht_1.data(), -2.f, 2.f);
        // x could be changed after compute, so copy to save src
        std::vector<T> x(xsrc.size());
        std::copy(xsrc.begin(), xsrc.end(), x.begin());
        const T* ht_1_data = ht_1.data();
        T* x_data = x.data();
        T* ht_ref_data = ht_ref.data();
        jit::gru_t step;
        step.gates = x_data;
        step.ht_1 = ht_1_data;
        step.ht = ht_ref_data;
        ref(&step, &attr);
T
tensor-tang 已提交
427
        VLOG(10) << attr;
T
tensor-tang 已提交
428 429 430
        TestAllImpls<KT, jit::GRUTuples<T>, PlaceType, std::vector<T>,
                     std::vector<T>, std::vector<T>>(attr, xsrc, ht_1, ht_ref,
                                                     attr);
431 432 433 434 435
      }
    }
  }
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestSeqPoolKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  // TODO(TJ): support more
  std::vector<jit::SeqPoolType> pool_types = {jit::SeqPoolType::kSum};
  for (auto type : pool_types) {
    for (int h : TestSizes()) {
      for (int w : TestSizes()) {
        const jit::seq_pool_attr_t attr(h, w, type);
        auto ref = jit::GetRefer<KT, jit::SeqPoolTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> x(h * w), yref(w);
        RandomVec<T>(h * w, x.data(), -2.f, 2.f);
        const T* x_data = x.data();
        T* yref_data = yref.data();
        ref(x_data, yref_data, &attr);
        VLOG(10) << attr;
        TestAllImpls<KT, jit::SeqPoolTuples<T>, PlaceType, std::vector<T>,
                     std::vector<T>>(attr, x, yref, attr);
      }
    }
  }
}

T
tensor-tang 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestNCHW16CMulNCKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  const int n = 3, c = 16 * 4, h = 10, w = 10;
  auto ref = jit::GetRefer<KT, jit::NCHW16CMulNCTuples<T>>();
  EXPECT_TRUE(ref != nullptr);
  int sz = n * c * h * w;
  std::vector<T> x(sz), y(n * c), zref(sz);
  std::vector<T> ztgt(sz), zjit(sz);
  RandomVec<T>(sz, x.data(), -2.f, 2.f);
  RandomVec<T>(n * c, y.data(), -2.f, 2.f);

  const T* x_data = x.data();
  const T* y_data = y.data();
  T* zref_data = zref.data();
  T* ztgt_data = ztgt.data();
  T* zjit_data = zjit.data();
  constexpr int simd_width = ZMM_FLOAT_BLOCK;
  int C = c / simd_width;
  auto tgt = jit::Get<KT, jit::NCHW16CMulNCTuples<T>, PlaceType>(0);
  auto jitcode = jit::GetJitCode<KT, jit::NCHW16CMulNCTuples<T>, PlaceType>(0);
  EXPECT_TRUE(tgt != nullptr);

  if (std::is_same<T, float>::value &&
      paddle::platform::MayIUse(paddle::platform::avx512f)) {
    EXPECT_TRUE(jitcode != nullptr);
  }
  for (int ni = 0; ni < n; ni++) {
    for (int ci = 0; ci < C; ci++) {
      auto ptr_x =
          x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
      auto ptr_zref =
          zref_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_ztgt =
          ztgt_data + ni * C * h * w * simd_width + ci * h * w * simd_width;

      ref(ptr_x, ptr_y, ptr_zref, h, w);
      tgt(ptr_x, ptr_y, ptr_ztgt, h, w);

      if (jitcode) {
        auto ptr_zjit =
            zjit_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
        jitcode(ptr_x, ptr_y, ptr_zjit, h, w);
      }
    }
  }
  ExpectEQ<T>(ztgt_data, zref_data, sz);
  if (jitcode) {
    ExpectEQ<T>(zjit_data, zref_data, sz);
  }
}

T
tensor-tang 已提交
513
// XYZNTuple
T
tensor-tang 已提交
514
TEST(JITKernel, kVMul) {
T
tensor-tang 已提交
515
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
516 517
  TestXYZNKernel<jit::kVMul, float, paddle::platform::CPUPlace>();
  TestXYZNKernel<jit::kVMul, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
518 519
}

T
tensor-tang 已提交
520
TEST(JITKernel, kVAdd) {
T
tensor-tang 已提交
521
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
522 523
  TestXYZNKernel<jit::kVAdd, float, paddle::platform::CPUPlace>();
  TestXYZNKernel<jit::kVAdd, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
524 525
}

T
tensor-tang 已提交
526
TEST(JITKernel, kVAddRelu) {
T
tensor-tang 已提交
527
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
528 529
  TestXYZNKernel<jit::kVAddRelu, float, paddle::platform::CPUPlace>();
  TestXYZNKernel<jit::kVAddRelu, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
530 531
}

T
tensor-tang 已提交
532
TEST(JITKernel, kVSub) {
T
tensor-tang 已提交
533
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
534 535
  TestXYZNKernel<jit::kVSub, float, paddle::platform::CPUPlace>();
  TestXYZNKernel<jit::kVSub, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
536 537 538
}

// AXYNTuples
T
tensor-tang 已提交
539
TEST(JITKernel, kVScal) {
T
tensor-tang 已提交
540
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
541 542
  TestAXYNKernel<jit::kVScal, float, paddle::platform::CPUPlace>();
  TestAXYNKernel<jit::kVScal, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
543 544
}

T
tensor-tang 已提交
545
TEST(JITKernel, kVAddBias) {
T
tensor-tang 已提交
546
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
547 548
  TestAXYNKernel<jit::kVAddBias, float, paddle::platform::CPUPlace>();
  TestAXYNKernel<jit::kVAddBias, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
549 550 551
}

// XYNTuples
T
tensor-tang 已提交
552
TEST(JITKernel, kVRelu) {
T
tensor-tang 已提交
553
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
554 555
  TestXYNKernel<jit::kVRelu, float, paddle::platform::CPUPlace>();
  TestXYNKernel<jit::kVRelu, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
556 557
}

T
tensor-tang 已提交
558
TEST(JITKernel, kVIdentity) {
T
tensor-tang 已提交
559
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
560 561
  TestXYNKernel<jit::kVIdentity, float, paddle::platform::CPUPlace>();
  TestXYNKernel<jit::kVIdentity, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
562 563
}

T
tensor-tang 已提交
564
TEST(JITKernel, kVExp) {
T
tensor-tang 已提交
565
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
566 567
  TestXYNKernel<jit::kVExp, float, paddle::platform::CPUPlace>();
  TestXYNKernel<jit::kVExp, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
568 569
}

T
tensor-tang 已提交
570
TEST(JITKernel, kVSigmoid) {
T
tensor-tang 已提交
571
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
572 573
  TestXYNKernel<jit::kVSigmoid, float, paddle::platform::CPUPlace>();
  TestXYNKernel<jit::kVSigmoid, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
574 575
}

T
tensor-tang 已提交
576
TEST(JITKernel, kVTanh) {
T
tensor-tang 已提交
577
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
578 579
  TestXYNKernel<jit::kVTanh, float, paddle::platform::CPUPlace>();
  TestXYNKernel<jit::kVTanh, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
580 581 582
}

// LSTM
T
tensor-tang 已提交
583
TEST(JITKernel, kLSTMCtHt) {
T
tensor-tang 已提交
584
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
585 586
  TestLSTMKernel<jit::kLSTMCtHt, float, paddle::platform::CPUPlace>();
  TestLSTMKernel<jit::kLSTMCtHt, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
587 588
}

T
tensor-tang 已提交
589
TEST(JITKernel, kLSTMC1H1) {
T
tensor-tang 已提交
590
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
591 592
  TestLSTMKernel<jit::kLSTMC1H1, float, paddle::platform::CPUPlace>();
  TestLSTMKernel<jit::kLSTMC1H1, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
593 594 595
}

// GRU
T
tensor-tang 已提交
596
TEST(JITKernel, kGRUH1) {
597
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
598 599
  TestGRUKernel<jit::kGRUH1, float, paddle::platform::CPUPlace>();
  TestGRUKernel<jit::kGRUH1, double, paddle::platform::CPUPlace>();
600 601
}

T
tensor-tang 已提交
602
TEST(JITKernel, kGRUHtPart1) {
603
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
604 605
  TestGRUKernel<jit::kGRUHtPart1, float, paddle::platform::CPUPlace>();
  TestGRUKernel<jit::kGRUHtPart1, double, paddle::platform::CPUPlace>();
606 607
}

T
tensor-tang 已提交
608
TEST(JITKernel, kGRUHtPart2) {
609
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
610 611
  TestGRUKernel<jit::kGRUHtPart2, float, paddle::platform::CPUPlace>();
  TestGRUKernel<jit::kGRUHtPart2, double, paddle::platform::CPUPlace>();
612 613
}

614 615 616 617 618 619
TEST(JITKernel, kSeqPool) {
  namespace jit = paddle::operators::jit;
  TestSeqPoolKernel<jit::kSeqPool, float, paddle::platform::CPUPlace>();
  TestSeqPoolKernel<jit::kSeqPool, double, paddle::platform::CPUPlace>();
}

T
tensor-tang 已提交
620
TEST(JITKernel, kNCHW16CMulNC) {
T
tensor-tang 已提交
621
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
622
  TestNCHW16CMulNCKernel<jit::kNCHW16CMulNC, float,
T
tensor-tang 已提交
623
                         paddle::platform::CPUPlace>();
T
tensor-tang 已提交
624
  TestNCHW16CMulNCKernel<jit::kNCHW16CMulNC, double,
T
tensor-tang 已提交
625 626 627
                         paddle::platform::CPUPlace>();
}

628
// TODO(yihua/TJ): add crf decoding and layer norm unit tests
T
tensor-tang 已提交
629

630 631 632
TEST(JITKernel, pool) {
  // TODO(TJ): add some test
}