analyzer_seq_pool1_tester.cc 8.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15
#include <algorithm>
T
tensor-tang 已提交
16 17 18 19 20 21 22 23
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {
namespace analysis {

T
tensor-tang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
struct OneSlotInBatch {
  std::string name;
  std::vector<std::vector<float>> data;
  std::vector<int> shape;
  std::vector<size_t> lod;
};

struct DataRecord {
  std::vector<std::vector<OneSlotInBatch>> batched_data;
  std::map<std::string, std::vector<std::vector<float>>> datasets;
  size_t batch_iter{0}, num_samples;  // total number of samples

  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1) {
    Load(path);
    Prepare(batch_size);
  }

  void Load(const std::string &path) {
    std::ifstream file(path);
    constexpr int num_slots = 154;
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, '\t', &data);
      std::vector<float> slot_data;
      split_to_float(data[1], ' ', &slot_data);
      std::string name = data[0];
      PADDLE_ENFORCE_EQ(slot_data.size() % 11, 0,
                        "line %d, %s should be divisible", num_lines, name);
      datasets[name].emplace_back(std::move(slot_data));
    }
    num_samples = num_lines / num_slots;
    PADDLE_ENFORCE_EQ(num_samples * num_slots, static_cast<size_t>(num_lines),
                      "num samples should be divisible");
    PADDLE_ENFORCE_GT(num_samples, 0);
  }

  void Prepare(int bs) {
    for (auto it = datasets.begin(); it != datasets.end(); ++it) {
      PADDLE_ENFORCE_EQ(it->second.size(), num_samples,
                        "size of each slot should be equal");
    }
    size_t num_batches = num_samples / bs;
    EXPECT_GT(num_batches, 0);
    batched_data.resize(num_batches);
    for (auto &one_batch : batched_data) {
      one_batch.resize(datasets.size());
      size_t i = 0;
      for (auto it = datasets.begin(); it != datasets.end(); ++it) {
        auto &slot = one_batch[i];
        slot.name = it->first;
        slot.data.resize(bs);
        slot.lod.resize(bs + 1);
        slot.lod[0] = 0;
        auto &lod = slot.lod;
        auto &datas = it->second;
        for (int k = 0; k < bs; ++k) {
          size_t id = k + batch_iter * bs;
          std::copy(datas[id].begin(), datas[id].end(),
                    std::back_inserter(slot.data[k]));
          size_t len = datas[id].size() / 11;
          PADDLE_ENFORCE_EQ(len * 11, datas[id].size(),
                            "%s %d size should be divisible", slot.name, id);
          lod[k + 1] = lod[k] + len;
        }
        slot.shape.assign({static_cast<int>(lod[bs]), 11});
        i++;
      }
    }
  }

  const std::vector<OneSlotInBatch> &NextBatch() {
    if (batch_iter >= batched_data.size() - 1) {
      batch_iter = -1;
    }
    return batched_data[++batch_iter];
  }
};

static void TensorAssignSlot(PaddleTensor *tensor, const OneSlotInBatch &slot) {
  tensor->name = slot.name + "_embed";
  tensor->shape = slot.shape;
  tensor->dtype = PaddleDType::FLOAT32;
  tensor->lod.clear();
  tensor->lod.emplace_back(slot.lod);
  TensorAssignData(tensor, slot.data);
}

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
  const auto &one_batch = data->NextBatch();
  input_slots->resize(one_batch.size());
  for (size_t i = 0; i < one_batch.size(); ++i) {
    auto &slot = one_batch[i];
    TensorAssignSlot(&((*input_slots)[i]), slot);
  }
}

T
tensor-tang 已提交
124
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
T
tensor-tang 已提交
125 126 127 128 129 130 131 132 133
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int epoch = FLAGS_test_all_data ? data.batched_data.size() : 1;
  LOG(INFO) << "number of samples: "
            << data.batched_data.size() * FLAGS_batch_size;
  for (int bid = 0; bid < epoch; ++bid) {
    PrepareInputs(&input_slots, &data);
    (*inputs).emplace_back(input_slots);
  }
T
tensor-tang 已提交
134 135
}

T
tensor-tang 已提交
136 137 138 139 140 141 142 143 144 145 146
void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false) {
  cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
  cfg->DisableGpu();
  cfg->SwitchSpecifyInputNames();
  cfg->pass_builder()->TurnOnDebug();
  cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
  if (use_mkldnn) {
    cfg->EnableMKLDNN();
  }
}

T
tensor-tang 已提交
147 148
void profile(bool use_mkldnn = false) {
  AnalysisConfig cfg;
T
tensor-tang 已提交
149
  SetConfig(&cfg, use_mkldnn);
T
tensor-tang 已提交
150 151 152 153 154 155 156 157 158 159

  std::vector<PaddleTensor> outputs;
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
}

TEST(Analyzer_seq_pool1, profile) { profile(); }

T
tensor-tang 已提交
160 161 162 163 164 165 166 167 168 169 170
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_seq_pool1, compare) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}

T
tensor-tang 已提交
171 172 173 174 175 176 177 178
// Check the fuse status
TEST(Analyzer_seq_pool1, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
T
tensor-tang 已提交
179

T
tensor-tang 已提交
180 181
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  ASSERT_EQ(fuse_statis.at("fc_fuse"), 10);
T
tensor-tang 已提交
182 183
  ASSERT_TRUE(fuse_statis.count("seqpool_concat_fuse"));
  EXPECT_EQ(fuse_statis.at("seqpool_concat_fuse"), 2);
T
tensor-tang 已提交
184
  LOG(INFO) << "num_ops: " << num_ops;
T
tensor-tang 已提交
185
  EXPECT_EQ(num_ops, 195);
T
tensor-tang 已提交
186 187
}

T
tensor-tang 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
void PrepareZeroCopyInputs(
    const std::unique_ptr<PaddlePredictor> &predictor,
    std::vector<std::unique_ptr<ZeroCopyTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  // only feed one batch
  const auto &one_batch = data.NextBatch();
  inputs->clear();
  for (size_t i = 0; i < one_batch.size(); ++i) {
    auto &slot = one_batch[i];
    auto tensor = predictor->GetInputTensor(slot.name + "_embed");
    tensor->Reshape(slot.shape);
    tensor->SetLoD({slot.lod});
    ZeroCopyTensorAssignData<float>(tensor.get(), slot.data);
    inputs->emplace_back(std::move(tensor));
  }
}

std::unique_ptr<ZeroCopyTensor> zerocopy_profile(int repeat_times) {
  AnalysisConfig config;
  SetConfig(&config);
  config.SwitchUseFeedFetchOps(false);
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
  std::vector<std::unique_ptr<ZeroCopyTensor>> inputs;
  PrepareZeroCopyInputs(predictor, &inputs);
  auto output_tensor = predictor->GetOutputTensor("reduce_sum_0.tmp_0");
  Timer timer;
  LOG(INFO) << "Warm up run...";
  timer.tic();
  predictor->ZeroCopyRun();
  PrintTime(FLAGS_batch_size, 1, 1, 0, timer.toc(), 1);
  if (FLAGS_profile) {
    paddle::platform::ResetProfiler();
  }
  LOG(INFO) << "Run " << repeat_times << " times...";
  timer.tic();
  for (int i = 0; i < repeat_times; i++) {
    predictor->ZeroCopyRun();
  }
  PrintTime(FLAGS_batch_size, repeat_times, 1, 0, timer.toc() / repeat_times,
            1);
  return output_tensor;
}

TEST(Analyzer_seq_pool1, zerocopy_profile) { zerocopy_profile(FLAGS_repeat); }

TEST(Analyzer_seq_pool1, zerocopy_fuse_statis) {
  AnalysisConfig config;
  SetConfig(&config);
  config.SwitchUseFeedFetchOps(false);
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
  int num_ops;
  auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops);
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  ASSERT_EQ(fuse_statis.at("fc_fuse"), 10);
  ASSERT_TRUE(fuse_statis.count("seqpool_concat_fuse"));
  EXPECT_EQ(fuse_statis.at("seqpool_concat_fuse"), 2);
  ASSERT_EQ(num_ops, 195);
}

T
tensor-tang 已提交
247 248 249
}  // namespace analysis
}  // namespace inference
}  // namespace paddle