test_train_inference_python.sh 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#!/bin/bash
source test_tipc/utils_func.sh

FILENAME=$1
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer'
#                 'whole_train_whole_infer', 'whole_infer', 'klquant_whole_infer']
MODE=$2

# parse params
dataline=$(cat ${FILENAME})
IFS=$'\n'
lines=(${dataline})

# The training params
model_name=$(func_parser_value "${lines[1]}")
echo "ppdet python_infer: ${model_name}"
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
train_use_gpu_key=$(func_parser_key "${lines[4]}")
train_use_gpu_value=$(func_parser_value "${lines[4]}")
autocast_list=$(func_parser_value "${lines[5]}")
autocast_key=$(func_parser_key "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
epoch_num=$(func_parser_params "${lines[6]}")
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
train_batch_value=$(func_parser_params "${lines[8]}")
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
32 33
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")
34 35 36 37 38 39 40 41 42 43

trainer_list=$(func_parser_value "${lines[14]}")
norm_key=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
44 45
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
trainer_key2=$(func_parser_key "${lines[20]}")
trainer_value2=$(func_parser_value "${lines[20]}")

# eval params
eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

# export params
save_export_key=$(func_parser_key "${lines[27]}")
save_export_value=$(func_parser_value "${lines[27]}")
export_weight_key=$(func_parser_key "${lines[28]}")
export_weight_value=$(func_parser_value "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
65
export_onnx_key=$(func_parser_key "${lines[34]}")
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
export_value2=$(func_parser_value "${lines[34]}")
kl_quant_export=$(func_parser_value "${lines[35]}")

# parser inference model
infer_mode_list=$(func_parser_value "${lines[37]}")
infer_is_quant_list=$(func_parser_value "${lines[38]}")
# parser inference
inference_py=$(func_parser_value "${lines[39]}")
use_gpu_key=$(func_parser_key "${lines[40]}")
use_gpu_list=$(func_parser_value "${lines[40]}")
use_mkldnn_key=$(func_parser_key "${lines[41]}")
use_mkldnn_list=$(func_parser_value "${lines[41]}")
cpu_threads_key=$(func_parser_key "${lines[42]}")
cpu_threads_list=$(func_parser_value "${lines[42]}")
batch_size_key=$(func_parser_key "${lines[43]}")
batch_size_list=$(func_parser_value "${lines[43]}")
use_trt_key=$(func_parser_key "${lines[44]}")
use_trt_list=$(func_parser_value "${lines[44]}")
precision_key=$(func_parser_key "${lines[45]}")
precision_list=$(func_parser_value "${lines[45]}")
infer_model_key=$(func_parser_key "${lines[46]}")
image_dir_key=$(func_parser_key "${lines[47]}")
infer_img_dir=$(func_parser_value "${lines[47]}")
save_log_key=$(func_parser_key "${lines[48]}")
benchmark_key=$(func_parser_key "${lines[49]}")
benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")

95
LOG_PATH="./test_tipc/output/${model_name}/${MODE}"
96 97 98
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_python.log"

99 100 101
line_num=`grep -n -w "to_static_train_benchmark_params" $FILENAME  | cut -d ":" -f 1`
to_static_key=$(func_parser_key "${lines[line_num]}")
to_static_trainer=$(func_parser_value "${lines[line_num]}")
102 103 104 105 106 107 108 109 110

function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
Z
zhengya01 已提交
111
    _gpu=$7
112 113 114 115 116 117 118 119 120
    # inference
    for use_gpu in ${use_gpu_list[*]}; do
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
            for use_mkldnn in ${use_mkldnn_list[*]}; do
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
Z
zhengya01 已提交
121
                        _save_log_path="${_log_path}/python_infer_cpu_gpus_${gpu}_usemkldnn_${use_mkldnn}_threads_${threads}_mode_paddle_batchsize_${batch_size}.log"
122 123 124 125 126 127 128 129 130 131
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
Z
zhengya01 已提交
132
                        status_check $last_status "${command}" "${status_log}" "${model_name}" "${_save_log_path}"
133 134 135 136 137
                    done
                done
            done
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
            for precision in ${precision_list[*]}; do
138
                if [[ ${precision} != "paddle" ]]; then
139 140 141 142 143 144 145 146
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} = "trt_int8" ]]; then
                        continue
                    fi
                    if [[ ${_flag_quant} = "True" ]] && [[ ${precision} != "trt_int8" ]]; then
                        continue
                    fi
                fi
                for batch_size in ${batch_size_list[*]}; do
Z
zhengya01 已提交
147
                    _save_log_path="${_log_path}/python_infer_gpu_gpus_${gpu}_mode_${precision}_batchsize_${batch_size}.log"
148 149 150 151 152 153 154 155 156 157
                    set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                    set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                    set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                    set_precision=$(func_set_params "${precision_key}" "${precision}")
                    set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                    set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                    command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
                    eval $command
                    last_status=${PIPESTATUS[0]}
                    eval "cat ${_save_log_path}"
Z
zhengya01 已提交
158
                    status_check $last_status "${command}" "${status_log}" "${model_name}" "${_save_log_path}"
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
                done
            done
        else
            echo "Does not support hardware other than CPU and GPU Currently!"
        fi
    done
}

if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
    # set CUDA_VISIBLE_DEVICES
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    eval $env

    Count=0
Z
zhengya01 已提交
178
    gpu=0
179 180 181
    IFS="|"
    infer_quant_flag=(${infer_is_quant_list})
    for infer_mode in ${infer_mode_list[*]}; do
182 183 184
        if [ ${infer_mode} = "null" ]; then
            continue
        fi
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        if [ ${MODE} = "klquant_whole_infer" ] && [ ${infer_mode} != "kl_quant" ]; then
            continue
        fi
        if [ ${MODE} = "whole_infer" ] && [ ${infer_mode} = "kl_quant" ]; then
            continue
        fi
        # run export
        case ${infer_mode} in
            norm) run_export=${norm_export} ;;
            pact) run_export=${pact_export} ;;
            fpgm) run_export=${fpgm_export} ;;
            distill) run_export=${distill_export} ;;
            kl_quant) run_export=${kl_quant_export} ;;
            *) echo "Undefined infer_mode!"; exit 1;
        esac
        set_export_weight=$(func_set_params "${export_weight_key}" "${export_weight_value}")
        set_save_export_dir=$(func_set_params "${save_export_key}" "${save_export_value}")
202
        set_filename=$(func_set_params "filename" "${model_name}")
203 204 205
        export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} ${set_save_export_dir} "
        echo  $export_cmd
        eval $export_cmd
Z
zhengya01 已提交
206
        status_check $? "${export_cmd}" "${status_log}" "${model_name}" 
207 208 209 210

        #run inference
        save_export_model_dir="${save_export_value}/${model_name}"
        is_quant=${infer_quant_flag[Count]}
Z
zhengya01 已提交
211
        func_inference "${python}" "${inference_py}" "${save_export_model_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant} "{gpu}"
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        Count=$((${Count} + 1))
    done
else
    IFS="|"
    Count=0
    for gpu in ${gpu_list[*]}; do
        use_gpu=${train_use_gpu_value}
        Count=$((${Count} + 1))
        ips=""
        if [ ${gpu} = "-1" ];then
            env=""
            use_gpu=False
        elif [ ${#gpu} -le 1 ];then
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
            eval ${env}
        elif [ ${#gpu} -le 15 ];then
            IFS=","
            array=(${gpu})
            env="export CUDA_VISIBLE_DEVICES=${array[0]}"
            IFS="|"
        else
            IFS=";"
            array=(${gpu})
            ips=${array[0]}
            gpu=${array[1]}
            IFS="|"
            env=" "
        fi
        for autocast in ${autocast_list[*]}; do
            for trainer in ${trainer_list[*]}; do
                flag_quant=False
243
                set_to_static=""
244 245 246 247 248 249 250 251 252 253 254 255 256
                if [ ${trainer} = "${norm_key}" ]; then
                    run_train=${norm_trainer}
                    run_export=${norm_export}
                elif [ ${trainer} = "${pact_key}" ]; then
                    run_train=${pact_trainer}
                    run_export=${pact_export}
                    flag_quant=True
                elif [ ${trainer} = "${fpgm_key}" ]; then
                    run_train=${fpgm_trainer}
                    run_export=${fpgm_export}
                elif [ ${trainer} = "${distill_key}" ]; then
                    run_train=${distill_trainer}
                    run_export=${distill_export}
257 258 259 260 261 262
                elif [ ${trainer} = "${trainer_key1}" ]; then
                    run_train=${trainer_value1}
                    run_export=${export_value1}
                elif [ ${trainer} = "${trainer_key2}" ]; then
                    run_train=${trainer_value2}
                    run_export=${export_value2}
263 264 265 266
                elif [ ${trainer} = "${to_static_key}" ]; then
                    run_train=${norm_trainer}
                    run_export=${norm_export}
                    set_to_static=${to_static_trainer}
267 268 269 270 271 272 273 274 275 276 277
                else
                    continue
                fi

                if [ ${run_train} = "null" ]; then
                    continue
                fi

                set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
                set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
                set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
278
                set_filename=$(func_set_params "filename" "${model_name}")
279
                set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
280
                set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
281
                save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
282 283
                if [ ${autocast} = "amp" ] || [ ${autocast} = "fp16" ]; then
                    set_autocast="--amp"
284
                    set_amp_level="amp_level=O2"
285 286
                else
                    set_autocast=" "
287 288 289 290 291 292 293 294
                    set_amp_level=" "
                fi
                if [ ${MODE} = "benchmark_train" ]; then
                    set_shuffle="TrainReader.shuffle=False"
                    set_enable_ce="--enable_ce=True"
                else
                    set_shuffle=" "
                    set_enable_ce=" "
295
                fi
296 297

                set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
298
                nodes="1"
299
                if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
300
                    cmd="${python} ${run_train} LearningRate.base_lr=0.0001 log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_shuffle} ${set_amp_level} ${set_enable_ce} ${set_autocast} ${set_to_static} ${set_train_params1}"
301
                elif [ ${#ips} -le 15 ];then  # train with multi-gpu
302
                    cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_shuffle} ${set_amp_level} ${set_enable_ce} ${set_autocast} ${set_to_static} ${set_train_params1}"
303
                else     # train with multi-machine
304 305 306 307 308 309
                    IFS=","
                    ips_array=(${ips})
                    nodes=${#ips_array[@]}
                    save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
                    IFS="|"
                    set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
310
                    cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_shuffle} ${set_amp_level} ${set_enable_ce} ${set_autocast} ${set_to_static} ${set_train_params1}"
311 312
                fi
                # run train
313 314
                train_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}.log"
                eval "${cmd} > ${train_log_path} 2>&1"
315 316
                last_status=$?
                cat ${train_log_path}
Z
zhengya01 已提交
317
                status_check $last_status "${cmd}" "${status_log}" "${model_name}" "${train_log_path}"
318 319 320 321 322

                set_eval_trained_weight=$(func_set_params "${export_weight_key}" "${save_log}/${model_name}/${train_model_name}")
                # run eval
                if [ ${eval_py} != "null" ]; then
                    set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
323
                    eval_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_eval.log"
324
                    eval_cmd="${python} ${eval_py} ${set_eval_trained_weight} ${set_use_gpu} ${set_eval_params1}"
325
                    eval "${eval_cmd} > ${eval_log_path} 2>&1"
326 327
                    last_status=$?
                    cat ${eval_log_path}
Z
zhengya01 已提交
328
                    status_check $last_status "${eval_cmd}" "${status_log}" "${model_name}" "${eval_log_path}"
329 330 331
                fi
                # run export model
                if [ ${run_export} != "null" ]; then
332
                    save_export_model_dir="${save_log}/${model_name}"
333
                    set_export_weight=$(func_set_params "${export_weight_key}" "${save_log}/${model_name}/${train_model_name}")
334
                    set_save_export_dir=$(func_set_params "${save_export_key}" "${save_log}")
335 336
                    if [ ${export_onnx_key} = "export_onnx" ]; then
                        # run export onnx model for rcnn
Z
zhengya01 已提交
337 338
                        export_log_path_onnx=${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_onnx_export.log
                        export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} export_onnx=True ${set_save_export_dir} >${export_log_path_onnx} 2>&1"
339
                        eval $export_cmd
Z
zhengya01 已提交
340
                        status_check $? "${export_cmd}" "${status_log}" "${model_name}" "${export_log_path_onnx}"
341 342 343 344
                        # copy model for inference benchmark
                        eval "cp ${save_export_model_dir}/* ${save_log}/"
                    fi
                    # run export model
345
                    export_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_export.log"
346
                    export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} ${set_save_export_dir} "
347
                    eval "${export_cmd} > ${export_log_path} 2>&1"
348 349
                    last_status=$?
                    cat ${export_log_path}
Z
zhengya01 已提交
350
                    status_check $last_status "${export_cmd}" "${status_log}" "${model_name}" "${export_log_path}"
351 352

                    #run inference
353 354 355 356
                    if [ ${export_onnx_key} != "export_onnx" ]; then
                        # copy model for inference benchmark
                        eval "cp ${save_export_model_dir}/* ${save_log}/"
                    fi
357
                    eval $env
Z
zhengya01 已提交
358
                    func_inference "${python}" "${inference_py}" "${save_export_model_dir}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" "{gpu}"
359 360 361 362 363 364 365

                    eval "unset CUDA_VISIBLE_DEVICES"
                fi
            done  # done with:    for trainer in ${trainer_list[*]}; do
        done      # done with:    for autocast in ${autocast_list[*]}; do
    done          # done with:    for gpu in ${gpu_list[*]}; do
fi  # end if [ ${MODE} = "infer" ]; then