target_layer.py 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import paddle

from ppdet.core.workspace import register, serializable

from .target import rpn_anchor_target, generate_proposal_target, generate_mask_target


@register
@serializable
class RPNTargetAssign(object):
    def __init__(self,
                 batch_size_per_im=256,
                 fg_fraction=0.5,
                 positive_overlap=0.7,
                 negative_overlap=0.3,
                 use_random=True):
        super(RPNTargetAssign, self).__init__()
        self.batch_size_per_im = batch_size_per_im
        self.fg_fraction = fg_fraction
        self.positive_overlap = positive_overlap
        self.negative_overlap = negative_overlap
        self.use_random = use_random

    def __call__(self, inputs, anchors):
        """
        inputs: ground-truth instances.
        anchor_box (Tensor): [num_anchors, 4], num_anchors are all anchors in all feature maps.
        """
        gt_boxes = inputs['gt_bbox']
44
        batch_size = len(gt_boxes)
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
        tgt_labels, tgt_bboxes, tgt_deltas = rpn_anchor_target(
            anchors, gt_boxes, self.batch_size_per_im, self.positive_overlap,
            self.negative_overlap, self.fg_fraction, self.use_random,
            batch_size)
        norm = self.batch_size_per_im * batch_size

        return tgt_labels, tgt_bboxes, tgt_deltas, norm


@register
class BBoxAssigner(object):
    __shared__ = ['num_classes']

    def __init__(self,
                 batch_size_per_im=512,
                 fg_fraction=.25,
W
wangguanzhong 已提交
61 62
                 fg_thresh=.5,
                 bg_thresh=.5,
63 64
                 use_random=True,
                 is_cls_agnostic=False,
W
wangguanzhong 已提交
65
                 cascade_iou=[0.5, 0.6, 0.7],
66 67 68 69 70 71 72 73
                 num_classes=80):
        super(BBoxAssigner, self).__init__()
        self.batch_size_per_im = batch_size_per_im
        self.fg_fraction = fg_fraction
        self.fg_thresh = fg_thresh
        self.bg_thresh = bg_thresh
        self.use_random = use_random
        self.is_cls_agnostic = is_cls_agnostic
W
wangguanzhong 已提交
74
        self.cascade_iou = cascade_iou
75 76 77 78 79 80 81
        self.num_classes = num_classes

    def __call__(self,
                 rpn_rois,
                 rpn_rois_num,
                 inputs,
                 stage=0,
W
wangguanzhong 已提交
82
                 is_cascade=False):
83 84 85
        gt_classes = inputs['gt_class']
        gt_boxes = inputs['gt_bbox']
        # rois, tgt_labels, tgt_bboxes, tgt_gt_inds
W
wangguanzhong 已提交
86
        # new_rois_num
87 88
        outs = generate_proposal_target(
            rpn_rois, gt_classes, gt_boxes, self.batch_size_per_im,
W
wangguanzhong 已提交
89 90
            self.fg_fraction, self.fg_thresh, self.bg_thresh, self.num_classes,
            self.use_random, is_cascade, self.cascade_iou[stage])
91
        rois = outs[0]
W
wangguanzhong 已提交
92
        rois_num = outs[-1]
93 94
        # tgt_labels, tgt_bboxes, tgt_gt_inds
        targets = outs[1:4]
W
wangguanzhong 已提交
95
        return rois, rois_num, targets
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115


@register
@serializable
class MaskAssigner(object):
    __shared__ = ['num_classes', 'mask_resolution']

    def __init__(self, num_classes=80, mask_resolution=14):
        super(MaskAssigner, self).__init__()
        self.num_classes = num_classes
        self.mask_resolution = mask_resolution

    def __call__(self, rois, tgt_labels, tgt_gt_inds, inputs):
        gt_segms = inputs['gt_poly']

        outs = generate_mask_target(gt_segms, rois, tgt_labels, tgt_gt_inds,
                                    self.num_classes, self.mask_resolution)

        # mask_rois, mask_rois_num, tgt_classes, tgt_masks, mask_index, tgt_weights
        return outs