multi_devices_graph_builder.cc 25.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

20
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
21
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/details/computation_op_handle.h"
23
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
C
chengduoZH 已提交
24
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
C
chengduoZH 已提交
25
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
Xin Pan 已提交
28
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
29
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
31

Y
Yu Yang 已提交
32 33 34
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
35 36

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
37 38 39 40
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
41
    const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
42
    platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
Y
Yu Yang 已提交
43 44 45
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
46
      nccl_ctxs_(nccl_ctxs),
Y
yuyang18 已提交
47
      strategy_(strategy) {
Y
Yu Yang 已提交
48 49 50 51 52
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
yuyang18 已提交
53
    const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
Y
Yu Yang 已提交
54 55
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
56
      local_scopes_(local_scopes),
Y
yuyang18 已提交
57
      strategy_(strategy) {
Y
Yu Yang 已提交
58
#endif
Y
Yu Yang 已提交
59 60 61
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
Y
Yancey1989 已提交
62
  balance_vars_.resize(places_.size(), 0);
Y
yuyang18 已提交
63 64 65 66 67
  if (strategy_.enable_data_balance_ && places_.size() == 1) {
    LOG(WARNING) << "It is no need to enable data balance when there is only "
                    "one place. enable_data_balance is set to False.";
    strategy_.enable_data_balance_ = false;
  }
Y
Yu Yang 已提交
68 69
}

70
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(Graph *result, ir::Node *node,
Y
Yu Yang 已提交
71 72
                                                size_t place_id) const {
  auto p = places_[place_id];
X
Xin Pan 已提交
73
  auto *op_handle = result->Get<GraphOps>("ops").back().get();
X
Xin Pan 已提交
74 75
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
76

77 78
  for (ir::Node *input : node->inputs) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, input, p, place_id);
T
wip  
typhoonzero 已提交
79 80 81
    op_handle->AddInput(var);
  }

82 83
  for (ir::Node *output : node->outputs) {
    CreateOpOutput(result, op_handle, output, p, place_id);
T
wip  
typhoonzero 已提交
84 85
  }
}
Y
fix pe  
Yancey1989 已提交
86 87

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
88
    const std::vector<std::unique_ptr<ir::Node>> &nodes) const {
Y
fix pe  
Yancey1989 已提交
89
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
90 91
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
92
  for (auto &node : nodes) {
X
Xin Pan 已提交
93
    if (node->NodeType() != ir::Node::Type::kOperation) continue;
94
    OpDesc *op = node->Op();
Y
Yancey1989 已提交
95 96
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
97
    if (op->Type() == "send") {
Y
fix pe  
Yancey1989 已提交
98 99 100 101 102 103 104 105 106 107
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
108
    const std::vector<std::unique_ptr<ir::Node>> &nodes) const {
Y
fix pe  
Yancey1989 已提交
109
  std::vector<std::string> recv_vars;
110
  for (auto &node : nodes) {
X
Xin Pan 已提交
111
    if (node->NodeType() != ir::Node::Type::kOperation) continue;
112
    OpDesc *op = node->Op();
Y
Yancey1989 已提交
113 114 115
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
116 117 118 119 120 121 122 123 124 125
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

bool MultiDevSSAGraphBuilder::IsDistTrainOp(
126
    ir::Node *node, const std::vector<std::string> &send_vars,
Y
fix pe  
Yancey1989 已提交
127 128
    const std::vector<std::string> &recv_vars) const {
  if (send_vars.size() == 0 || recv_vars.size() == 0) {
T
typhoonzero 已提交
129 130 131
    return false;
  }

Y
Yu Yang 已提交
132 133 134 135
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
Y
fix pe  
Yancey1989 已提交
136
                    const std::vector<std::string> &rpc_vars) -> bool {
T
typhoonzero 已提交
137
    for (auto &var : opvars) {
Y
Yancey1989 已提交
138 139 140
      // a variable name with the suffix `.block` means it's a splited
      // variable by (DistributeTranspiler)
      // [python/paddle/fluid/transpiler/distribute_transpiler.py]
T
typhoonzero 已提交
141
      if (var.find(".block") != std::string::npos &&
Y
fix pe  
Yancey1989 已提交
142
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
Y
Yu Yang 已提交
143
        return true;
T
typhoonzero 已提交
144 145
      }
    }
Y
Yu Yang 已提交
146
    return false;
T
typhoonzero 已提交
147 148
  };

149 150 151
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
X
Xin Pan 已提交
152
    input_var_names.push_back(input->Name());
153 154
  }
  for (ir::Node *output : node->outputs) {
X
Xin Pan 已提交
155
    output_var_names.push_back(output->Name());
156 157 158 159
  }

  return checker(output_var_names, send_vars) ||
         checker(input_var_names, recv_vars);
T
typhoonzero 已提交
160 161
}

Y
Yancey1989 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

182
std::unique_ptr<Graph> MultiDevSSAGraphBuilder::Apply(
X
Xin Pan 已提交
183
    std::unique_ptr<Graph> graph) const {
X
Xin Pan 已提交
184
  // Rebuild the graph structure.
185 186 187 188
  auto nodes = std::move(graph->nodes);
  graph->nodes.clear();

  for (auto &node : nodes) {
X
Xin Pan 已提交
189 190
    if (node->NodeType() == ir::Node::Type::kVariable) {
      all_vars_.emplace(node->Name(), node->Var());
191
    }
C
fix ci  
chengduoZH 已提交
192
  }
C
chengduoZH 已提交
193

X
Xin Pan 已提交
194
  Graph &result = *graph;
C
chengduoZH 已提交
195
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
196 197

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
198 199 200
  result.Set("vars", new GraphVars(places_.size()));
  result.Set("dep_vars", new GraphDepVars);
  result.Set("ops", new GraphOps);
201

Y
fix pe  
Yancey1989 已提交
202 203
  // find send/recv vars so that we can place the distributed training
  // realted op in the place 0
204 205
  auto send_vars = FindDistTrainSendVars(nodes);
  auto recv_vars = FindDistTrainRecvVars(nodes);
T
typhoonzero 已提交
206

C
chengduoZH 已提交
207 208 209
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  bcast_var_name_set.resize(places_.size());

C
chengduoZH 已提交
210
  size_t cur_device_id = 0;
Y
Yu Yang 已提交
211
  bool is_forwarding = true;
212

213 214
  // TODO(panyx0718): FIXME: nodes should be sorted by "program" order.
  for (auto &node : nodes) {
X
Xin Pan 已提交
215
    if (node->NodeType() != ir::Node::Type::kOperation) continue;
Y
Yancey1989 已提交
216
    if (boost::get<int>(
217
            node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Yancey1989 已提交
218
        static_cast<int>(OpRole::kRPC)) {
219 220 221 222
      CreateRPCOp(&result, node.get());
    } else if (IsDistTrainOp(node.get(), send_vars, recv_vars)) {
      CreateDistTrainOp(&result, node.get());
    } else if (IsScaleLossOp(node.get())) {
Y
Yu Yang 已提交
223
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
224 225
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
Y
Yu Yang 已提交
226 227
        CreateScaleLossGradOp(&result);
      }
228 229 230 231
      // This assumes the backward generating code will ensure IsScaleLossOp
      // is true only for the op that scale the final scalar loss.
      // It also assumes backward op will always follow the forward op in
      // the block.
Y
Yu Yang 已提交
232
      is_forwarding = false;
Y
Yu Yang 已提交
233
    } else {
234
      int op_dev_id = GetOpDeviceID(node.get());
C
chengduo 已提交
235
      if (op_dev_id != -1) {  // This op only runs on one specific device.
236 237
        CreateComputationalOp(&result, node.get(), op_dev_id);
        for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
238
          var_name_on_devices_.emplace(n->Name(), op_dev_id);
C
chengduoZH 已提交
239
        }
C
chengduo 已提交
240 241 242
      } else {
        // This op runs on all devices, and its output may have parameter's
        // gradients.
243 244 245 246 247 248
        if (node->Op()->Type() == "read" && strategy_.enable_data_balance_) {
          node->Op()->SetAttr("throw_eof_exp", false);
          CreateComputationalOps(&result, node.get(), places_.size());
          // TODO(panyx0718): builder shouldn't depend on the out logic of
          // a specific op.
          const auto &data_var_names = node->Op()->Output("Out");
249
          InsertDataBalanceOp(&result, data_var_names);
F
fengjiayi 已提交
250
        } else {
251
          CreateComputationalOps(&result, node.get(), places_.size());
252 253
        }

C
chengduo 已提交
254 255 256
        if (!is_forwarding && places_.size() > 1) {
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
257
          if (static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
C
chengduo 已提交
258 259 260
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward))) {
            try {
261 262
              auto backward_vars = boost::get<std::vector<std::string>>(
                  node->Op()->GetNullableAttr(
C
chengduo 已提交
263
                      OpProtoAndCheckerMaker::OpRoleVarAttrName()));
Y
yuyang18 已提交
264

C
chengduo 已提交
265
              PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
Y
yuyang18 已提交
266

C
chengduo 已提交
267 268 269 270
              for (size_t i = 0; i < backward_vars.size(); i += 2) {
                auto &p_name = backward_vars[i];
                auto &g_name = backward_vars[i + 1];
                VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
Y
yuyang18 已提交
271

C
chengduo 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
                switch (strategy_.reduce_) {
                  case BuildStrategy::ReduceStrategy::kReduce:
                    cur_device_id = GetAppropriateDeviceID({g_name});
                    CreateReduceOp(&result, g_name, cur_device_id);
                    var_name_on_devices_.emplace(g_name, cur_device_id);
                    bcast_var_name_set[cur_device_id].emplace(p_name);
                    break;
                  case BuildStrategy::ReduceStrategy::kAllReduce:
                    if (IsSparseGradient(g_name)) {
                      CreateReduceOp(&result, g_name, 0);
                      CreateBroadcastOp(&result, g_name, 0);
                    } else {
                      InsertAllReduceOp(&result, g_name);
                    }
                    break;
                  default:
                    LOG(FATAL) << "Unknown reduce strategy ";
                    break;
                }
Y
yuyang18 已提交
291
              }
C
chengduo 已提交
292
            } catch (boost::bad_get e) {
C
chengduoZH 已提交
293
            }
Y
Yu Yang 已提交
294 295 296 297 298 299
          }
        }
      }
    }
  }

300 301 302 303 304 305 306 307 308 309 310 311 312
  bool use_gpu = false;
#ifdef PADDLE_WITH_CUDA
  use_gpu = nccl_ctxs_ != nullptr;
#endif

  if (use_gpu ||
      strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
    // Insert BCast Ops
    for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
      auto &to_bcast_set = bcast_var_name_set[dev_id];
      for (auto &bcast_name : to_bcast_set) {
        CreateBroadcastOp(&result, bcast_name, dev_id);
      }
C
chengduoZH 已提交
313 314
    }
  }
315

Y
Yu Yang 已提交
316 317
  /*
    Dependency graph has been constructed. However, there are still data
318
    hazards need to be handled.
Y
Yu Yang 已提交
319 320
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
321

Y
Yu Yang 已提交
322 323 324 325
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
X
Xin Pan 已提交
326
  return std::move(graph);
Y
Yu Yang 已提交
327 328
}

Y
Yancey1989 已提交
329 330 331
bool MultiDevSSAGraphBuilder::IsSparseGradient(const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
  if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
C
fix ci  
chengduoZH 已提交
332 333 334
    return true;
  }
  return false;
335 336
}

337 338 339 340 341 342 343 344 345 346 347 348 349
void MultiDevSSAGraphBuilder::SetCommunicationContext(
    OpHandleBase *op_handle, const platform::Place &p) const {
#ifdef PADDLE_WITH_CUDA
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

X
Xin Pan 已提交
350
void MultiDevSSAGraphBuilder::CreateBroadcastOp(Graph *result,
C
chengduoZH 已提交
351
                                                const std::string &p_name,
C
chengduoZH 已提交
352
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
353
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
354
  auto *op_handle = new BroadcastOpHandle(result->CreateEmptyNode("broadcast"),
X
Xin Pan 已提交
355
                                          local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
356
#else
X
Xin Pan 已提交
357
  auto *op_handle = new BroadcastOpHandle(result->CreateEmptyNode("broadcast"),
358
                                          local_scopes_, places_);
C
chengduoZH 已提交
359
#endif
X
Xin Pan 已提交
360
  result->Get<GraphOps>("ops").emplace_back(op_handle);
X
Xin Pan 已提交
361

X
Xin Pan 已提交
362 363
  auto *in =
      result->Get<GraphVars>("vars").at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
364 365 366 367
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
368
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
369
    auto &vars = result->Get<GraphVars>("vars").at(i).at(p_name);
X
Xin Pan 已提交
370 371
    auto *out_var = new VarHandle(result->CreateEmptyNode(p_name), vars.size(),
                                  i, p_name, p);
C
chengduoZH 已提交
372 373 374 375 376
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

X
Xin Pan 已提交
377
void MultiDevSSAGraphBuilder::CreateComputationalOp(Graph *result,
378
                                                    ir::Node *node,
C
chengduoZH 已提交
379
                                                    int dev_id) const {
380
  result->Get<GraphOps>("ops").emplace_back(
X
Xin Pan 已提交
381
      new ComputationOpHandle(result->CreateOpNode(node->Op()),
382 383
                              local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, node, dev_id);
C
chengduoZH 已提交
384 385
}

X
Xin Pan 已提交
386
void MultiDevSSAGraphBuilder::InsertAllReduceOp(Graph *result,
C
chengduoZH 已提交
387
                                                const std::string &og) const {
Y
Yu Yang 已提交
388
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
389 390 391
  result->Get<GraphOps>("ops").emplace_back(
      new AllReduceOpHandle(result->CreateEmptyNode("allreduce"), local_scopes_,
                            places_, nccl_ctxs_));
C
chengduoZH 已提交
392
#else
X
Xin Pan 已提交
393
  result->Get<GraphOps>("ops").emplace_back(new AllReduceOpHandle(
X
Xin Pan 已提交
394
      result->CreateEmptyNode("allreduce"), local_scopes_, places_));
C
chengduoZH 已提交
395
#endif
X
Xin Pan 已提交
396
  auto *op_handle = result->Get<GraphOps>("ops").back().get();
Y
Yu Yang 已提交
397 398 399

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
400
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
401
    auto &vars = result->Get<GraphVars>("vars")[i][og];
Y
Yu Yang 已提交
402 403
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
404 405
    op_handle->AddInput(prev_grad.get());

X
Xin Pan 已提交
406 407
    auto var =
        new VarHandle(result->CreateEmptyNode(og), vars.size(), i, og, p);
Y
Yu Yang 已提交
408 409 410 411 412
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

413
void MultiDevSSAGraphBuilder::InsertDataBalanceOp(
X
Xin Pan 已提交
414
    Graph *result, const std::vector<std::string> &datas) const {
F
fengjiayi 已提交
415
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
416 417 418
  result->Get<GraphOps>("ops").emplace_back(
      new DataBalanceOpHandle(result->CreateEmptyNode("data_balance"),
                              local_scopes_, places_, nccl_ctxs_));
F
fengjiayi 已提交
419
#else
X
Xin Pan 已提交
420
  result->Get<GraphOps>("ops").emplace_back(new DataBalanceOpHandle(
X
Xin Pan 已提交
421
      result->CreateEmptyNode("data_balance"), local_scopes_, places_));
F
fengjiayi 已提交
422
#endif
X
Xin Pan 已提交
423
  auto *op_handle = result->Get<GraphOps>("ops").back().get();
424 425 426 427
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
    for (const std::string &d_name : datas) {
X
Xin Pan 已提交
428
      auto &vars = result->Get<GraphVars>("vars")[i][d_name];
429 430
      PADDLE_ENFORCE(!vars.empty());
      op_handle->AddInput(vars.back().get());
X
Xin Pan 已提交
431
      auto var = new VarHandle(result->CreateEmptyNode(d_name), vars.size(), i,
432
                               d_name, p);
433 434 435 436 437 438
      vars.emplace_back(var);
      op_handle->AddOutput(var);
    }
  }
}

Y
Yu Yang 已提交
439 440 441 442 443 444 445 446 447 448 449 450
bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

451
int MultiDevSSAGraphBuilder::GetOpDeviceID(ir::Node *node) const {
Y
yuyang18 已提交
452
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
453 454
    return -1;
  }
455
  int op_role = boost::get<int>(
456
      node->Op()->GetAttr(framework::OpProtoAndCheckerMaker::OpRoleAttrName()));
457 458
  if (op_role != static_cast<int>(framework::OpRole::kOptimize)) {
    return -1;
C
chengduoZH 已提交
459
  }
460
  auto param_grad = boost::get<std::vector<std::string>>(
X
Xin Pan 已提交
461
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
462 463 464

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1]);
X
Xin Pan 已提交
465 466
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s]",
                    node->Op()->Type(), param_grad[0]);
467
  return dev_id;
468 469 470 471 472
}

int MultiDevSSAGraphBuilder::GetVarDeviceID(const std::string &varname) const {
  auto got = var_name_on_devices_.find(varname);
  return got == var_name_on_devices_.end() ? -1 : got->second;
C
chengduoZH 已提交
473 474
}

X
Xin Pan 已提交
475
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(Graph *result) const {
Y
Yu Yang 已提交
476 477 478
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
479 480 481
    auto *communication_dev_ctx =
        nccl_ctxs_ ? nccl_ctxs_->DevCtx(places_[i])
                   : platform::DeviceContextPool::Instance().Get(places_[i]);
Y
Yu Yang 已提交
482 483 484 485
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif
X
Xin Pan 已提交
486
    auto *op_handle = new ScaleLossGradOpHandle(
X
Xin Pan 已提交
487 488
        result->CreateEmptyNode("scale_loss_grad"), local_scopes_.size(),
        local_scopes_[i], places_[i], communication_dev_ctx);
X
Xin Pan 已提交
489
    result->Get<GraphOps>("ops").emplace_back(op_handle);
Y
Yu Yang 已提交
490 491 492 493 494 495 496

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

497 498 499 500
    // TODO(panyx0718): GradVarName(loss_var_name_)
    const std::string grad_var_name = GradVarName(loss_var_name_);
    auto &vars = result->Get<GraphVars>("vars")[i][grad_var_name];
    size_t version = vars.size();
X
Xin Pan 已提交
501
    auto var = new VarHandle(result->CreateEmptyNode(grad_var_name), version, i,
502 503 504
                             grad_var_name, places_[i]);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
Y
Yu Yang 已提交
505 506 507
  }
}

X
Xin Pan 已提交
508
void MultiDevSSAGraphBuilder::CreateComputationalOps(Graph *result,
509
                                                     ir::Node *node,
T
typhoonzero 已提交
510 511
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
512 513
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
X
Xin Pan 已提交
514 515
    result->Get<GraphOps>("ops").emplace_back(
        new ComputationOpHandle(result->CreateOpNode(node->Op()), s, p));
516
    CreateOpHandleIOs(result, node, scope_idx);
Y
Yu Yang 已提交
517 518 519
  }
}

X
Xin Pan 已提交
520
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(Graph *result,
C
chengduoZH 已提交
521 522
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
523
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
524
  result->Get<GraphOps>("ops").emplace_back(new ReduceOpHandle(
X
Xin Pan 已提交
525
      result->CreateEmptyNode("reduce"), local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
526
#else
527
  result->Get<GraphOps>("ops").emplace_back(new ReduceOpHandle(
X
Xin Pan 已提交
528
      result->CreateEmptyNode("reduce"), local_scopes_, places_));
C
chengduoZH 已提交
529
#endif
X
Xin Pan 已提交
530
  auto *op_handle = result->Get<GraphOps>("ops").back().get();
C
chengduoZH 已提交
531 532 533

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
534
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
535
    auto &vars = result->Get<GraphVars>("vars")[i][og];
C
chengduoZH 已提交
536 537 538 539
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
X
Xin Pan 已提交
540
  auto &vars = result->Get<GraphVars>("vars")[dst_dev_id][og];
X
Xin Pan 已提交
541
  auto var = new VarHandle(result->CreateEmptyNode(og), vars.size(), dst_dev_id,
X
Xin Pan 已提交
542
                           og, places_[dst_dev_id]);
C
chengduoZH 已提交
543 544 545 546 547
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

548 549
// Find the first occurence of `prev_op_name` and make current `op` depend
// on it.
X
Xin Pan 已提交
550
void MultiDevSSAGraphBuilder::ConnectOp(Graph *result, OpHandleBase *op,
Y
fix pe  
Yancey1989 已提交
551
                                        const std::string &prev_op_name) const {
X
Xin Pan 已提交
552
  for (auto &prev_op : result->Get<GraphOps>("ops")) {
Y
fix pe  
Yancey1989 已提交
553
    if (prev_op->Name() == prev_op_name) {
X
Xin Pan 已提交
554
      auto *dep_var = new DummyVarHandle(result->CreateEmptyNode("dummy"));
Y
Yancey1989 已提交
555
      prev_op->AddOutput(dep_var);
X
Xin Pan 已提交
556
      result->Get<GraphDepVars>("dep_vars").emplace(dep_var);
Y
fix pe  
Yancey1989 已提交
557
      op->AddInput(dep_var);
Y
Yancey1989 已提交
558 559 560 561
    }
  }
}

X
Xin Pan 已提交
562
void MultiDevSSAGraphBuilder::CreateDistTrainOp(Graph *result,
563
                                                ir::Node *node) const {
Y
Yancey1989 已提交
564
  int op_dev_id = -1;
565 566 567
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
X
Xin Pan 已提交
568
    input_var_names.push_back(input->Name());
569 570
  }
  for (ir::Node *output : node->outputs) {
X
Xin Pan 已提交
571
    output_var_names.push_back(output->Name());
572 573 574 575 576
  }

  if (node->Op()->Type() == "split_byref" ||
      node->Op()->Type() == "split_selected_rows") {
    op_dev_id = GetVarDeviceID(input_var_names[0]);
Y
Yancey1989 已提交
577
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
578 579
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
Y
Yancey1989 已提交
580 581 582
        var_name_on_devices_.emplace(varname, op_dev_id);
      }
    }
583
    for (auto &varname : output_var_names) {
Y
Yancey1989 已提交
584 585
      var_name_on_devices_.emplace(varname, op_dev_id);
    }
586 587 588
  } else if (node->Op()->Type() == "concat") {
    op_dev_id = GetVarDeviceID(input_var_names[0]);
    for (auto &varname : output_var_names) {
Y
yi.wu 已提交
589 590
      var_name_on_devices_.emplace(varname, op_dev_id);
    }
Y
Yancey1989 已提交
591 592 593 594 595 596 597
  } else {
    PADDLE_ENFORCE(
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
598 599
                 "can not find right place for distributed op: %s",
                 node->Op()->Type());
Y
Yancey1989 已提交
600

601 602
  CreateComputationalOp(result, node, op_dev_id);
  if (node->Op()->Type() == "concat") {
X
Xin Pan 已提交
603
    ConnectOp(result, result->Get<GraphOps>("ops").back().get(),
X
Xin Pan 已提交
604
              "fetch_barrier");
Y
Yancey1989 已提交
605 606 607
  }
}

608
// Create RPC related op handles that connects its in ops and out ops.
609
void MultiDevSSAGraphBuilder::CreateRPCOp(Graph *result, ir::Node *node) const {
Y
Yancey1989 已提交
610
  int op_dev_id = -1;
611
  if (node->Op()->Type() == "send") {
X
Xin Pan 已提交
612
    op_dev_id = GetVarDeviceID(node->inputs[0]->Name());
Y
Yancey1989 已提交
613 614
    // the variable name which contains .block means it was splited by
    // split_byref op
615 616
    // so that we can balance the variable blocks to all the pserver
    // instances.
Y
Yancey1989 已提交
617
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
X
Xin Pan 已提交
618
        node->inputs[0]->Name().find(".block") == std::string::npos) {
619 620
      std::vector<std::string> input_var_names;
      for (ir::Node *n : node->inputs) {
X
Xin Pan 已提交
621
        input_var_names.push_back(n->Name());
622 623 624
      }
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
Y
Yancey1989 已提交
625 626 627
        var_name_on_devices_.emplace(varname, op_dev_id);
      }
    }
628 629 630
  } else if (node->Op()->Type() == "recv") {
    std::vector<std::string> output_var_names;
    for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
631
      output_var_names.push_back(n->Name());
632 633 634
    }
    op_dev_id = GetAppropriateDeviceID(output_var_names);
    for (auto &varname : output_var_names) {
Y
Yancey1989 已提交
635 636 637 638 639 640 641 642
      var_name_on_devices_.emplace(varname, op_dev_id);
    }
  } else {
    // send_barrier and fetch_barrier op can be scheduled on device 0
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
643
                 node->Op()->Type());
Y
Yancey1989 已提交
644

645 646 647
  result->Get<GraphOps>("ops").emplace_back(new RPCOpHandle(
      result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
      node->Op()->Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
648

649
  if (node->Op()->Type() == "send_barrier") {
X
Xin Pan 已提交
650
    ConnectOp(result, result->Get<GraphOps>("ops").back().get(), "send");
651
  } else if (node->Op()->Type() == "recv") {
X
Xin Pan 已提交
652
    ConnectOp(result, result->Get<GraphOps>("ops").back().get(),
X
Xin Pan 已提交
653
              "send_barrier");
654
  } else if (node->Op()->Type() == "fetch_barrier") {
X
Xin Pan 已提交
655
    ConnectOp(result, result->Get<GraphOps>("ops").back().get(), "recv");
656
  } else if (node->Op()->Type() == "send") {
Y
Yancey1989 已提交
657 658 659
    // do nothing
  } else {
    PADDLE_THROW(
Y
Yancey1989 已提交
660
        "rpc op should be in ["
661
        "send, send_barrier. recv, fetch_barrier]");
Y
Yancey1989 已提交
662 663
  }

664
  CreateOpHandleIOs(result, node, op_dev_id);
Y
Yu Yang 已提交
665 666
}

667
bool MultiDevSSAGraphBuilder::IsScaleLossOp(ir::Node *node) const {
Y
yuyang18 已提交
668
  return boost::get<int>(
669
             node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
670 671 672
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
673
}
Y
Yu Yang 已提交
674 675 676
}  // namespace details
}  // namespace framework
}  // namespace paddle