conv_transpose_op.cc 18.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_transpose_op.h"
S
sneaxiy 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17 18
#include <string>
#include <vector>
19
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
20

J
Jacek Czaja 已提交
21 22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
25 26 27
namespace paddle {
namespace operators {

C
chengduoZH 已提交
28
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
29
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
30
                 "Input(Input) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
31
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
32
                 "Input(Filter) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
33
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
34
                 "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
35 36 37

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
38 39
  std::vector<int> output_size =
      ctx->Attrs().Get<std::vector<int>>("output_size");
C
chengduoZH 已提交
40 41
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
42
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
43
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
44

C
chengduoZH 已提交
45 46 47 48 49 50 51 52
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "ConvTransposeOp intput should be 4-D or 5-D tensor.");
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
  PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
                 "ConvTransposeOp input dimension and strides dimension should "
                 "be consistent.");
53 54 55 56
  if (output_size.size())
    PADDLE_ENFORCE_EQ(output_size.size(), strides.size(),
                      "ConvTransposeOp output_size dimension and strides "
                      "dimension should be the same.");
C
chengduoZH 已提交
57
  PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
C
chengduoZH 已提交
58
                    "ConvTransposeOp paddings dimension and strides "
C
chengduoZH 已提交
59
                    "dimension should be the same.");
C
chengduoZH 已提交
60 61 62
  PADDLE_ENFORCE_EQ(paddings.size(), dilations.size(),
                    "ConvTransposeOp paddings dimension and dilations "
                    "dimension should be the same.");
C
chengduoZH 已提交
63
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
Y
Yibing Liu 已提交
64
                    "In ConvTransposeOp, The number of input channels should "
65
                    "be equal to the number of filter's channels.");
C
chengduoZH 已提交
66

Y
Yibing Liu 已提交
67
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[1] * groups});
C
chengduoZH 已提交
68
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
69
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
70 71 72 73 74 75 76 77 78 79 80
    auto infer_shape =
        (in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] + filter_extent;
    if (output_size.size()) {
      PADDLE_ENFORCE((output_size[i] >= infer_shape &&
                      output_size[i] < infer_shape + strides[i]),
                     "ConvTransposeOp output_size should be "
                     "in appropriate range.");
      output_shape.push_back(output_size[i]);
    } else {
      output_shape.push_back(infer_shape);
    }
C
chengduoZH 已提交
81
  }
C
chengduoZH 已提交
82
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
83 84
}

85 86
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
J
Jacek Czaja 已提交
87 88 89
  framework::LibraryType library_{framework::LibraryType::kPlain};
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
90
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
91
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
92 93 94 95
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
J
Jacek Czaja 已提交
96 97 98
    if (use_cudnn) {
      library_ = framework::LibraryType::kCUDNN;
    }
C
chengduoZH 已提交
99 100
  }
#endif
J
Jacek Czaja 已提交
101 102 103 104 105
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
106
  }
J
Jacek Czaja 已提交
107
#endif
108

Y
Yu Yang 已提交
109 110
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout_, library_);
111 112
}

Y
Yu Yang 已提交
113
void Conv2DTransposeOpMaker::Make() {
J
Jacek Czaja 已提交
114 115 116 117
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
118 119 120 121
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator. "
      "The format of input tensor is NCHW. Where N is batch size, C is the "
C
chengduoZH 已提交
122 123
      "number of input channels, H is the height of the feature, and "
      "W is the width of the feature.");
C
chengduoZH 已提交
124 125 126 127 128 129 130 131
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
132 133 134 135 136 137
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();

C
chengduoZH 已提交
138
  AddOutput("Output",
C
chengduoZH 已提交
139
            "(Tensor) The output tensor of convolution transpose operator. "
C
chengduoZH 已提交
140
            "The format of output tensor is also NCHW.");
141 142 143 144
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
Y
Yibing Liu 已提交
145 146 147 148
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution "
               "transpose operator. ")
      .SetDefault(1);
C
chengduoZH 已提交
149 150 151 152 153
  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
154 155
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
156
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
157
      "convolution transpose operator.")
C
chengduoZH 已提交
158
      .SetDefault({1, 1});
C
chengduoZH 已提交
159 160
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
161
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
162
      "transpose operator.")
C
chengduoZH 已提交
163
      .SetDefault({0, 0});
164 165 166 167
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
J
Jacek Czaja 已提交
168 169 170 171 172
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
173 174 175 176 177 178 179 180 181 182 183 184 185 186
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
187
      .SetDefault(platform::kDefaultConvWorkspaceSizeLimitMB);
C
chengduoZH 已提交
188
  AddComment(R"DOC(
C
chengduoZH 已提交
189 190
Convolution2D Transpose Operator.

C
chengduoZH 已提交
191
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
192
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
193
parameters is checked in the infer-shape.
C
chengduoZH 已提交
194 195 196 197 198 199 200
Input(Input) and output(Output) are in NCHW format. Where N is batchsize, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
201
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
202

Y
update  
yi.wu 已提交
203
For an example:
C
chengduoZH 已提交
204
  Input:
C
chengduoZH 已提交
205 206
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
207
  Output:
C
chengduoZH 已提交
208 209 210
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
211 212
       H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
C
chengduoZH 已提交
213
  $$
C
chengduoZH 已提交
214 215 216
)DOC");
}

Y
Yu Yang 已提交
217
void Conv3DTransposeOpMaker::Make() {
C
chengduoZH 已提交
218 219 220 221 222 223
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator."
           "The format of input tensor is NCDHW. Where N is batch size, C is "
           "the number of channels, D is the depth of the feature, H is the "
           "height of the feature, and "
           "W is the width of the feature.");
C
chengduoZH 已提交
224 225
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
226 227 228
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
229 230
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
231
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
232
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
233 234 235 236
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
C
chengduoZH 已提交
237 238
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
239 240 241 242
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
C
chengduoZH 已提交
243 244 245 246 247 248
  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
249
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
250
                            "(vector<int> default:{1, 1, 1}), the "
251
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
252
                            "convolution transpose operator.")
C
chengduoZH 已提交
253
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
254
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
255
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
256
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
257
      .SetDefault({0, 0, 0});
258 259 260 261
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution3d "
               "transpose operator. ")
      .SetDefault(1);
262 263 264 265
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
266 267 268
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
269 270 271 272 273 274 275 276 277 278 279 280 281 282
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
283
      .SetDefault(platform::kDefaultConvWorkspaceSizeLimitMB);
C
chengduoZH 已提交
284
  AddComment(R"DOC(
C
chengduoZH 已提交
285 286
Convolution3D Transpose Operator.

C
chengduoZH 已提交
287
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
288
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
289
parameters is checked in the infer-shape.
C
chengduoZH 已提交
290 291 292 293 294 295 296 297
Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
298
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
299

300
Example:
C
chengduoZH 已提交
301
  Input:
C
chengduoZH 已提交
302 303
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
304
  Output:
C
chengduoZH 已提交
305 306 307
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
308 309 310
       D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\
       H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
C
chengduoZH 已提交
311
  $$
C
chengduoZH 已提交
312 313 314
)DOC");
}

C
chengduoZH 已提交
315
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
316 317 318 319 320 321 322 323 324 325
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

326 327 328
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
329
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
330 331 332 333 334 335
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
336 337 338 339 340 341 342 343 344
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
Y
Yu Yang 已提交
345 346
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout_, library_);
347 348
}

S
sneaxiy 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
class ConvTransposeGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType(ForwardOp().Type() + "_grad");
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
    if (ForwardOp().Inputs().count("Bias") > 0) {
      op->SetInput("Bias", Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    }
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

C
chengduoZH 已提交
371 372 373 374
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
375

376
// conv2d_transpose
Y
Yang Yang 已提交
377 378
REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
S
sneaxiy 已提交
379
                  ops::ConvTransposeGradOpDescMaker);
380
REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
381 382

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
383
    conv2d_transpose,
Q
QI JUN 已提交
384 385
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
386
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
387
    conv2d_transpose_grad,
Q
QI JUN 已提交
388 389 390
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
391

392
// conv3d_transpose
Y
Yang Yang 已提交
393 394
REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
                  ops::Conv3DTransposeOpMaker,
S
sneaxiy 已提交
395
                  ops::ConvTransposeGradOpDescMaker);
396
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
397 398

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
399
    conv3d_transpose,
Q
QI JUN 已提交
400 401
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
402
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
403
    conv3d_transpose_grad,
Q
QI JUN 已提交
404 405 406
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
407 408 409 410

// depthwise conv2d_transpose
REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
S
sneaxiy 已提交
411
                  ops::ConvTransposeGradOpDescMaker);
412 413 414 415 416 417 418 419 420 421 422
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose_grad,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);