README_cn.md 20.5 KB
Newer Older
W
wangxinxin08 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
简体中文 | [English](README.md)

# PP-YOLO 模型

## 内容
- [简介](#简介)
- [模型库与基线](#模型库与基线)
- [使用说明](#使用说明)
- [未来工作](#未来工作)
- [附录](#附录)

## 简介

14
[PP-YOLO](https://arxiv.org/abs/2007.12099)是PaddleDetection优化和改进的YOLOv3的模型,其精度(COCO数据集mAP)和推理速度均优于[YOLOv4](https://arxiv.org/abs/2004.10934)模型,要求使用PaddlePaddle 2.0.2(可使用pip安装) 或适当的[develop版本](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/install/Tables.html#whl-develop)
W
wangxinxin08 已提交
15 16 17 18

PP-YOLO在[COCO](http://cocodataset.org) test-dev2017数据集上精度达到45.9%,在单卡V100上FP32推理速度为72.9 FPS, V100上开启TensorRT下FP16推理速度为155.6 FPS。

<div align="center">
19
  <img src="../../docs/images/ppyolo_map_fps.png" width=500 />
W
wangxinxin08 已提交
20 21
</div>

22
PP-YOLO和PP-YOLOv2从如下方面优化和提升YOLOv3模型的精度和速度:
W
wangxinxin08 已提交
23 24 25 26 27 28 29 30 31 32 33

- 更优的骨干网络: ResNet50vd-DCN
- 更大的训练batch size: 8 GPUs,每GPU batch_size=24,对应调整学习率和迭代轮数
- [Drop Block](https://arxiv.org/abs/1810.12890)
- [Exponential Moving Average](https://www.investopedia.com/terms/e/ema.asp)
- [IoU Loss](https://arxiv.org/pdf/1902.09630.pdf)
- [Grid Sensitive](https://arxiv.org/abs/2004.10934)
- [Matrix NMS](https://arxiv.org/pdf/2003.10152.pdf)
- [CoordConv](https://arxiv.org/abs/1807.03247)
- [Spatial Pyramid Pooling](https://arxiv.org/abs/1406.4729)
- 更优的预训练模型
34 35 36
- [PAN](https://arxiv.org/abs/1803.01534)
- Iou aware Loss
- 更大的输入尺寸
W
wangxinxin08 已提交
37 38 39 40 41 42 43

## 模型库

### PP-YOLO模型

|          模型            | GPU个数 | 每GPU图片个数 |  骨干网络  | 输入尺寸 | Box AP<sup>val</sup> | Box AP<sup>test</sup> | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | 模型下载 | 配置文件 |
|:------------------------:|:-------:|:-------------:|:----------:| :-------:| :------------------: | :-------------------: | :------------: | :---------------------: | :------: | :------: |
44 45 46 47 48 49 50 51 52 53 54 55 56
| PP-YOLO                  |     8      |     24     | ResNet50vd |     608     |         44.8         |         45.2          |      72.9      |          155.6          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     512     |         43.9         |         44.4          |      89.9      |          188.4          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     416     |         42.1         |         42.5          |      109.1      |          215.4          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     320     |         38.9         |         39.3          |      132.2      |          242.2          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     608     |         45.3         |         45.9          |      72.9      |          155.6          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     512     |         44.4         |         45.0          |      89.9      |          188.4          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     416     |         42.7         |         43.2          |      109.1      |          215.4          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     320     |         39.5         |         40.1          |      132.2      |          242.2          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml)                   |
| PP-YOLO               |     4      |     32     | ResNet18vd |     512     |         29.2         |         29.5          |      357.1      |          657.9          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_r18vd_coco.yml)                   |
| PP-YOLO               |     4      |     32     | ResNet18vd |     416     |         28.6         |         28.9          |      409.8      |          719.4          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_r18vd_coco.yml)                   |
| PP-YOLO               |     4      |     32     | ResNet18vd |     320     |         26.2         |         26.4          |      480.7      |          763.4          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_r18vd_coco.yml)                   |
| PP-YOLOv2               |     8      |     12     | ResNet50vd |     640     |         49.1         |         49.5          |      68.9      |          106.5          | [model](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml)                   |
| PP-YOLOv2               |     8      |     12     | ResNet101vd |     640     |         49.7         |         50.3          |     49.5     |         87.0         | [model](https://paddledet.bj.bcebos.com/models/ppyolov2_r101vd_dcn_365e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolov2_r101vd_dcn_365e_coco.yml)                   |
W
wangxinxin08 已提交
57 58 59 60

**注意:**

- PP-YOLO模型使用COCO数据集中train2017作为训练集,使用val2017和test-dev2017作为测试集,Box AP<sup>test</sup>`mAP(IoU=0.5:0.95)`评估结果。
61
- PP-YOLO模型训练过程中使用8 GPUs,每GPU batch size为24进行训练,如训练GPU数和batch size不使用上述配置,须参考[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.2/docs/tutorials/FAQ.md)调整学习率和迭代次数。
W
wangxinxin08 已提交
62 63 64 65
- PP-YOLO模型推理速度测试采用单卡V100,batch size=1进行测试,使用CUDA 10.2, CUDNN 7.5.1,TensorRT推理速度测试使用TensorRT 5.1.2.2。
- PP-YOLO模型FP32的推理速度测试数据为使用`tools/export_model.py`脚本导出模型后,使用`deploy/python/infer.py`脚本中的`--run_benchnark`参数使用Paddle预测库进行推理速度benchmark测试结果, 且测试的均为不包含数据预处理和模型输出后处理(NMS)的数据(与[YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet)测试方法一致)。
- TensorRT FP16的速度测试相比于FP32去除了`yolo_box`(bbox解码)部分耗时,即不包含数据预处理,bbox解码和NMS(与[YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet)测试方法一致)。

W
wangxinxin08 已提交
66 67 68 69
### PP-YOLO 轻量级模型

|          模型                | GPU个数 | 每GPU图片个数 |  模型体积  | 输入尺寸 | Box AP<sup>val</sup> |  Box AP50<sup>val</sup> | Kirin 990 1xCore (FPS) | 模型下载 |  配置文件 |
|:----------------------------:|:-------:|:-------------:|:----------:| :-------:| :------------------: |  :--------------------: | :--------------------: | :------: | :------: |
70 71
| PP-YOLO_MobileNetV3_large    |    4    |      32       |    28MB    |   320    |         23.2         |           42.6          |           14.1         | [下载链接](https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_large_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_mbv3_large_coco.yml)                   |
| PP-YOLO_MobileNetV3_small    |    4    |      32       |    16MB    |   320    |         17.2         |           33.8          |           21.5         | [下载链接](https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_small_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_mbv3_small_coco.yml)                   |
W
wangxinxin08 已提交
72 73

- PP-YOLO_MobileNetV3 模型使用COCO数据集中train2017作为训练集,使用val2017作为测试集,Box AP<sup>val</sup>`mAP(IoU=0.5:0.95)`评估结果, Box AP50<sup>val</sup>`mAP(IoU=0.5)`评估结果。
74
- PP-YOLO_MobileNetV3 模型训练过程中使用4GPU,每GPU batch size为32进行训练,如训练GPU数和batch size不使用上述配置,须参考[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.2/docs/tutorials/FAQ.md)调整学习率和迭代次数。
W
wangxinxin08 已提交
75 76
- PP-YOLO_MobileNetV3 模型推理速度测试环境配置为麒麟990芯片单线程。

G
Guanghua Yu 已提交
77 78 79 80
### PP-YOLO tiny模型

|            模型              |  GPU 个数  | 每GPU图片个数 |  模型体积  | 后量化模型体积 |   输入尺寸  | Box AP<sup>val</sup> | Kirin 990 1xCore (FPS) | 模型下载 | 配置文件 | 量化后模型 |
|:----------------------------:|:----------:|:-------------:| :--------: | :------------: | :----------:| :------------------: | :--------------------: | :------: | :------: | :--------: |
81 82
| PP-YOLO tiny                 |     8      |      32       |   4.2MB    |   **1.3M**     |     320     |         20.6         |          92.3         | [model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_tiny_650e_coco.yml) | [预测模型](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_quant.tar) |
| PP-YOLO tiny                 |     8      |      32       |   4.2MB    |   **1.3M**     |     416     |         22.7         |          65.4         | [model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_tiny_650e_coco.yml) | [预测模型](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_quant.tar) |
G
Guanghua Yu 已提交
83 84

- PP-YOLO-tiny 模型使用COCO数据集中train2017作为训练集,使用val2017作为测试集,Box AP<sup>val</sup>`mAP(IoU=0.5:0.95)`评估结果, Box AP50<sup>val</sup>`mAP(IoU=0.5)`评估结果。
85
- PP-YOLO-tiny 模型训练过程中使用8GPU,每GPU batch size为32进行训练,如训练GPU数和batch size不使用上述配置,须参考[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.2/docs/tutorials/FAQ.md)调整学习率和迭代次数。
G
Guanghua Yu 已提交
86 87 88
- PP-YOLO-tiny 模型推理速度测试环境配置为麒麟990芯片4线程,arm8架构。
- 我们也提供的PP-YOLO-tiny的后量化压缩模型,将模型体积压缩到**1.3M**,对精度和预测速度基本无影响

W
wangxinxin08 已提交
89 90 91 92 93 94
### Pascal VOC数据集上的PP-YOLO

PP-YOLO在Pascal VOC数据集上训练模型如下:

|       模型         | GPU个数 | 每GPU图片个数 |  骨干网络  |   输入尺寸  | Box AP50<sup>val</sup> | 模型下载 | 配置文件 |
|:------------------:|:-------:|:-------------:|:----------:| :----------:| :--------------------: | :------: | :-----: |
95 96 97
| PP-YOLO            |    8    |       12      | ResNet50vd |     608     |          84.9          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_r50vd_dcn_voc.yml)                   |
| PP-YOLO            |    8    |       12      | ResNet50vd |     416     |          84.3          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_r50vd_dcn_voc.yml)                   |
| PP-YOLO            |    8    |       12      | ResNet50vd |     320     |          82.2          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/ppyolo/ppyolo_r50vd_dcn_voc.yml)                   |
W
wangxinxin08 已提交
98

W
wangxinxin08 已提交
99 100 101 102 103 104 105 106 107 108
## 使用说明

### 1. 训练

使用8GPU通过如下命令一键式启动训练(以下命令均默认在PaddleDetection根目录运行), 通过`--eval`参数开启训练中交替评估。

```bash
python -m paddle.distributed.launch --log_dir=./ppyolo_dygraph/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml &>ppyolo_dygraph.log 2>&1 &
```

109 110 111 112 113
可选:在训练之前使用`tools/anchor_cluster.py`得到适用于你的数据集的anchor,并注意修改模型配置文件和Reader配置文件中的anchor设置,如`configs/ppyolo/_base_/ppyolo_tiny.yml``configs/ppyolo/_base_/ppyolo_tiny_reader.yml`中anchor设置
```bash
python tools/anchor_cluster.py -c configs/ppyolo/ppyolo_tiny_650e_coco.yml -n 9 -s 320 -m v2 -i 1000
```

W
wangxinxin08 已提交
114 115 116 117 118 119
### 2. 评估

使用单GPU通过如下命令一键式评估模型在COCO val2017数据集效果

```bash
# 使用PaddleDetection发布的权重
120
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams
W
wangxinxin08 已提交
121 122 123 124 125 126 127 128 129

# 使用训练保存的checkpoint
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=output/ppyolo_r50vd_dcn_1x_coco/model_final
```

我们提供了`configs/ppyolo/ppyolo_test.yml`用于评估COCO test-dev2017数据集的效果,评估COCO test-dev2017数据集的效果须先从[COCO数据集下载页](https://cocodataset.org/#download)下载test-dev2017数据集,解压到`configs/ppyolo/ppyolo_test.yml``EvalReader.dataset`中配置的路径,并使用如下命令进行评估

```bash
# 使用PaddleDetection发布的权重
130
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams
W
wangxinxin08 已提交
131 132 133 134 135 136 137

# 使用训练保存的checkpoint
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=output/ppyolo_r50vd_dcn_1x_coco/model_final
```

评估结果保存于`bbox.json`中,将其压缩为zip包后通过[COCO数据集评估页](https://competitions.codalab.org/competitions/20794#participate)提交评估。

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
**注意1:** `configs/ppyolo/ppyolo_test.yml`仅用于评估COCO test-dev数据集,不用于训练和评估COCO val2017数据集。

**注意2:** 由于动态图框架整体升级,以下几个PaddleDetection发布的权重模型评估时需要添加--bias字段, 例如

```bash
# 使用PaddleDetection发布的权重
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams --bias
```
主要有:

1.ppyolo_r50vd_dcn_1x_coco

2.ppyolo_r50vd_dcn_voc

3.ppyolo_r18vd_coco

4.ppyolo_mbv3_large_coco

5.ppyolo_mbv3_small_coco

6.ppyolo_tiny_650e_coco
W
wangxinxin08 已提交
159 160 161 162 163 164 165

### 3. 推理

使用单GPU通过如下命令一键式推理图像,通过`--infer_img`指定图像路径,或通过`--infer_dir`指定目录并推理目录下所有图像

```bash
# 推理单张图像
166
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_img=demo/000000014439_640x640.jpg
W
wangxinxin08 已提交
167 168

# 推理目录下所有图像
169
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_dir=demo
W
wangxinxin08 已提交
170 171
```

172
### 4. 推理部署
W
wangxinxin08 已提交
173 174 175 176 177

PP-YOLO模型部署及推理benchmark需要通过`tools/export_model.py`导出模型后使用Paddle预测库进行部署和推理,可通过如下命令一键式启动。

```bash
# 导出模型,默认存储于output/ppyolo目录
178
python tools/export_model.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams
W
wangxinxin08 已提交
179 180

# 预测库推理
181
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=demo/000000014439_640x640.jpg --device=GPU
W
wangxinxin08 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
```


## 未来工作

1. 发布PP-YOLO-tiny模型
2. 发布更多骨干网络的PP-YOLO模型

## 附录

PP-YOLO模型相对于YOLOv3模型优化项消融实验数据如下表所示。

| 序号 |        模型                  | Box AP<sup>val</sup> | Box AP<sup>test</sup> | 参数量(M) | FLOPs(G) | V100 FP32 FPS |
| :--: | :--------------------------- | :------------------: | :-------------------: | :-------: | :------: | :-----------: |
|  A   | YOLOv3-DarkNet53             |         38.9         |            -          |   59.13   |  65.52   |      58.2     |
|  B   | YOLOv3-ResNet50vd-DCN        |         39.1         |            -          |   43.89   |  44.71   |      79.2     |
|  C   | B + LB + EMA + DropBlock     |         41.4         |            -          |   43.89   |  44.71   |      79.2     |
|  D   | C + IoU Loss                 |         41.9         |            -          |   43.89   |  44.71   |      79.2     |
|  E   | D + IoU Aware                |         42.5         |            -          |   43.90   |  44.71   |      74.9     |
|  F   | E + Grid Sensitive           |         42.8         |            -          |   43.90   |  44.71   |      74.8     |
|  G   | F + Matrix NMS               |         43.5         |            -          |   43.90   |  44.71   |      74.8     |
|  H   | G + CoordConv                |         44.0         |            -          |   43.93   |  44.76   |      74.1     |
|  I   | H + SPP                      |         44.3         |          45.2         |   44.93   |  45.12   |      72.9     |
|  J   | I + Better ImageNet Pretrain |         44.8         |          45.2         |   44.93   |  45.12   |      72.9     |
|  K   | J + 2x Scheduler             |         45.3         |          45.9         |   44.93   |  45.12   |      72.9     |

**注意:**

- 精度与推理速度数据均为使用输入图像尺寸为608的测试结果
- Box AP为在COCO train2017数据集训练,val2017和test-dev2017数据集上评估`mAP(IoU=0.5:0.95)`数据
- 推理速度为单卡V100上,batch size=1, 使用上述benchmark测试方法的测试结果,测试环境配置为CUDA 10.2,CUDNN 7.5.1
213
- [YOLOv3-DarkNet53](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/yolov3/yolov3_darknet53_270e_coco.yml)精度38.9为PaddleDetection优化后的YOLOv3模型,可参见[YOLOv3](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.2/configs/yolov3/README.md)
W
wangguanzhong 已提交
214 215 216 217

## 引用

```
218 219 220 221 222 223
@article{huang2021pp,
  title={PP-YOLOv2: A Practical Object Detector},
  author={Huang, Xin and Wang, Xinxin and Lv, Wenyu and Bai, Xiaying and Long, Xiang and Deng, Kaipeng and Dang, Qingqing and Han, Shumin and Liu, Qiwen and Hu, Xiaoguang and others},
  journal={arXiv preprint arXiv:2104.10419},
  year={2021}
}
W
wangguanzhong 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
@misc{long2020ppyolo,
title={PP-YOLO: An Effective and Efficient Implementation of Object Detector},
author={Xiang Long and Kaipeng Deng and Guanzhong Wang and Yang Zhang and Qingqing Dang and Yuan Gao and Hui Shen and Jianguo Ren and Shumin Han and Errui Ding and Shilei Wen},
year={2020},
eprint={2007.12099},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{ppdet2019,
title={PaddleDetection, Object detection and instance segmentation toolkit based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleDetection}},
year={2019}
}
```