analysis_predictor.cc 30.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20
#include <string>
21
#include <utility>
22
#include <vector>
23
#include "paddle/fluid/framework/feed_fetch_method.h"
24
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
26
#include "paddle/fluid/framework/ir/pass.h"
27
#include "paddle/fluid/framework/naive_executor.h"
28
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/framework/var_type_traits.h"
30
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
32
#include "paddle/fluid/inference/api/helper.h"
33
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
34
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
35
#include "paddle/fluid/inference/utils/singleton.h"
36
#include "paddle/fluid/memory/memcpy.h"
37
#include "paddle/fluid/platform/cpu_helper.h"
38
#include "paddle/fluid/platform/gpu_info.h"
39
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
40 41
#include "paddle/fluid/platform/profiler.h"

42 43 44 45
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

Y
Yan Chunwei 已提交
46 47
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
48
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
49 50
#endif

N
nhzlx 已提交
51
#if PADDLE_WITH_ANAKIN
52
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
N
nhzlx 已提交
53
#endif
54

T
tensor-tang 已提交
55
DECLARE_bool(profile);
56 57 58

namespace paddle {

N
nhzlx 已提交
59
using inference::Singleton;
N
nhzlx 已提交
60
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
61
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
62 63
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
64
#endif
65

66 67 68 69
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
70 71
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
72 73 74 75 76 77
    return true;
  }
  return false;
}
}  // namespace

Y
Yan Chunwei 已提交
78
bool AnalysisPredictor::Init(
79 80
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
81
  VLOG(3) << "Predictor::init()";
T
tensor-tang 已提交
82 83 84
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";
85 86
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
87 88 89
    platform::EnableProfiler(tracking_device);
  }

90
  // no matter with or without MKLDNN
L
luotao1 已提交
91
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
92

93 94 95 96 97 98 99 100 101 102 103 104 105
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
106
  }
107 108 109 110 111 112 113 114 115

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
116
  if (parent_scope) {
117 118 119
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
120
    scope_ = parent_scope;
121
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
122 123 124
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
125
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
126
  }
127 128 129 130 131
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
132 133
  if (!program) {
    if (!LoadProgramDesc()) return false;
134

135 136 137 138 139 140 141 142 143
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

144 145 146
    // Optimize the program, and load parameters and modify them in the
    // scope_.
    // This will change the scope_ address.
147
    if (config_.ir_optim()) {
148 149 150 151 152 153 154
      status_ir_optim_enabled_ = true;
      OptimizeInferenceProgram();
    } else {
      // Load parameters
      LOG(INFO) << "load parameters ";
      LoadParameters();
    }
Y
Yan Chunwei 已提交
155
  } else {
156 157
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
158 159
    inference_program_ = program;
  }
M
Michal Gallus 已提交
160

161 162 163 164 165
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
166
  if (config_.use_gpu_) {
167
    status_use_gpu_ = true;
168
    place_ = paddle::platform::CUDAPlace(config_.device_id_);
169 170 171 172 173 174 175 176
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
177
                     config_.use_feed_fetch_ops_);
178

179
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
180

181 182 183
  return true;
}

L
luotao1 已提交
184
void AnalysisPredictor::SetMkldnnThreadID(int tid) {
L
luotao1 已提交
185 186 187 188 189 190 191
#ifdef PADDLE_WITH_MKLDNN
  platform::set_cur_thread_id(tid);
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
#endif
}

192 193 194
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
L
luotao1 已提交
195 196 197
  if (UNLIKELY(config_.cpu_math_library_num_threads() > 1)) {
    paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
  }
M
minqiyang 已提交
198
  VLOG(3) << "Predictor::predict";
199 200 201 202 203 204
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
205
    return false;
206
  }
M
Michal Gallus 已提交
207

208 209 210
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
211

212 213 214 215
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
216
  }
Y
Yan Chunwei 已提交
217 218 219 220 221 222

  // Collect variable shapes for memory optimization.
  if (need_collect_var_shapes_for_memory_optim()) {
    CollectVarShapes();
  }

M
minqiyang 已提交
223
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
224

Y
Yan Chunwei 已提交
225 226 227 228 229 230 231
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
  tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  tensor_array_batch_cleaner_.ResetNoTensorVars();
232 233
  return true;
}
234

235 236
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
237
  VLOG(3) << "Predictor::set_feed";
238 239 240 241 242 243 244 245 246 247 248 249 250 251
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto &input = feed_tensors_[i];
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
252
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
253
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
254
      input_ptr = input.mutable_data<float>(ddim, place_);
255 256
    } else if (inputs[i].dtype == PaddleDType::INT32) {
      input_ptr = input.mutable_data<int32_t>(ddim, place_);
257 258 259 260 261
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

262 263 264 265 266 267
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
268 269 270 271
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
272 273 274
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
275
                   inputs[i].data.length(), dev_ctx->stream());
276 277 278 279
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }
280 281 282 283 284 285 286
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
    int idx = -1;
287
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
288 289
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
290 291
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
292 293
      }
      idx = feed_names_[name];
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
324
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
325 326 327
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    int idx = boost::get<int>(fetches_[i]->GetAttr("col"));
328 329 330 331 332
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
333
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
334
    if (type == framework::proto::VarType::FP32) {
335 336
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
337
    } else if (type == framework::proto::VarType::INT64) {
338 339
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
340 341 342
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
343
    } else {
344
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
345 346
    }
  }
Y
Yan Chunwei 已提交
347 348
  return true;
}
349

350
void AnalysisPredictor::PrepareArgument() {
351 352
  argument_.SetUseGPU(config_.use_gpu());
  argument_.SetGPUDeviceId(config_.gpu_device_id());
Y
Yan Chunwei 已提交
353
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
Y
Yan Chunwei 已提交
354 355 356
  argument_.SetStaticMemoryOptim(config_.static_memory_optim_);
  argument_.SetStaticMemoryOptimForceUpdate(
      config_.static_memory_optim_force_update_);
T
Tao Luo 已提交
357
  argument_.SetModelFromMemory(config_.model_from_memory_);
358
  argument_.SetEngineOptInfo(config_.engine_opt_info_);
Y
Yan Chunwei 已提交
359
  // Analyze inference_program
360 361
  argument_.SetUseAnakin(config_.anakin_engine_enabled());
  argument_.SetPredictorID(predictor_id_);
362 363
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
364 365
  } else {
    PADDLE_ENFORCE(
366
        !config_.params_file().empty(),
T
Tao Luo 已提交
367
        "Either model_dir or (param_file, prog_file) should be set.");
368
    PADDLE_ENFORCE(!config_.prog_file().empty());
N
nhzlx 已提交
369
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
370

371 372
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
373
  }
374

375
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
376
    LOG(INFO) << "TensorRT subgraph engine is enabled";
377 378 379
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
380
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
381
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
382
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
W
Wojciech Uss 已提交
383
  }
384

385
  if (config_.anakin_engine_enabled()) {
386
    argument_.SetAnakinMaxBatchSize(config_.anakin_max_batchsize_);
387
    argument_.SetAnakinMaxInputShape(config_.anakin_max_input_shape_);
388
    argument_.SetAnakinMinSubgraphSize(config_.anakin_min_subgraph_size_);
389
    argument_.SetAnakinPrecisionMode(config_.anakin_precision_mode_);
390
    argument_.SetAnakinAutoConfigLayout(config_.anakin_auto_config_layout_);
391 392
    argument_.SetAnakinPassesFilter(config_.anakin_passes_filter_);
    argument_.SetAnakinOpsFilter(config_.anakin_ops_filter_);
393 394 395
    LOG(INFO) << "Anakin subgraph engine is enabled";
  }

396
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
397
    LOG(INFO) << "MKLDNN is enabled";
398 399 400
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

401 402 403 404 405 406 407 408 409 410
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
#endif

411
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
412 413 414 415
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
416
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
417
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
418
  argument_.SetScopeNotOwned(scope_.get());
419 420 421 422 423 424 425
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  status_program_optimized_ = true;

  PrepareArgument();
426 427 428 429 430
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
431
  inference_program_.reset(
432
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
433
  LOG(INFO) << "== optimize end ==";
Y
Yan Chunwei 已提交
434
}
435 436

template <>
437 438
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
M
minqiyang 已提交
439
  VLOG(3) << "create AnalysisConfig";
440
  if (config.use_gpu()) {
S
Sylwester Fraczek 已提交
441
    // 1. GPU memory
442
    PADDLE_ENFORCE_GE(config.memory_pool_init_size_mb(), 0.f);
443 444
    PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
                      config.gpu_device_id());
445
    std::vector<std::string> flags;
446 447 448 449 450 451 452 453 454 455 456

    float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
    if (fraction_of_gpu_memory > 0.95f) {
      LOG(ERROR)
          << "Allocate too much memory for the GPU memory pool, assigned "
          << config.memory_pool_init_size_mb() << " MB";
      LOG(ERROR)
          << "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
    }

    if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
457 458
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
459
                         std::to_string(fraction_of_gpu_memory);
460
      flags.push_back(flag);
M
minqiyang 已提交
461
      VLOG(3) << "set flag: " << flag;
462 463 464 465 466
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
467 468 469 470 471 472 473
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
474 475
    return nullptr;
  }
476

G
Gabor Buella 已提交
477
  return predictor;
478 479
}

480 481 482 483 484 485 486 487 488 489 490 491
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

492
void AnalysisPredictor::PrepareFeedFetch() {
493 494
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
495 496 497 498 499 500 501 502
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
503
      idx2feeds_[idx] = op->Output("Out")[0];
504 505
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
Y
Yan Chunwei 已提交
506 507
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
508
      }
Y
Yan Chunwei 已提交
509
      fetches_[idx] = op;
N
nhzlx 已提交
510
      idx2fetches_[idx] = op->Input("X")[0];
511 512 513 514
    }
  }
}

515 516 517 518 519 520 521 522
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
  var->GetMutable<framework::FeedFetchList>();
  var = scope->Var("fetch");
  var->GetMutable<framework::FeedFetchList>();
}

N
nhzlx 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

539 540 541 542 543 544 545
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
546 547 548 549 550 551 552
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }

553 554 555 556 557 558 559 560 561 562
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
563 564 565 566 567 568
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
569 570 571 572 573
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
  executor_->Run();
Y
Yan Chunwei 已提交
574
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
575
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
576
  tensor_array_batch_cleaner_.ResetTensorArray();
577 578 579 580 581
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
582
  std::string filename;
583 584 585
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
586 587 588
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
589
    filename = config_.prog_file();
590
  } else {
591
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
592 593 594 595
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
596
    LOG(ERROR) << string::Sprintf(
597 598
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
599 600
    return false;
  }
601 602 603

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
604
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
605 606 607
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
608 609
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
610 611 612 613 614 615 616 617
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
618
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
619
  }
620 621 622 623 624 625 626
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
627

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

648
      if (!config_.params_file().empty()) {
649 650 651 652 653 654
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
655
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
656 657 658 659 660
        op->CheckAttrs();
      }
    }
  }

661
  if (!config_.params_file().empty()) {
662 663 664 665 666 667
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
668
    op->SetAttr("file_path", {config_.params_file()});
669 670 671 672
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
673
  framework::NaiveExecutor e(place_);
674 675 676 677
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

678 679
  return true;
}
680

N
nhzlx 已提交
681
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
682 683 684 685 686 687 688 689
bool AnalysisPredictor::SaveTrtCalibToDisk() {
  PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
                 "This func can be invoked only in trt mode");
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
          boost::get<std::string>(op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
690
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
691 692 693 694
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
695 696
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
697
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
698
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
699 700
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
701 702 703
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
704

N
nhzlx 已提交
705
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
706 707 708
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
709

N
nhzlx 已提交
710 711 712 713 714
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
715
      std::string calibration_table_data_path =
N
nhzlx 已提交
716 717 718 719
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
720 721 722 723 724

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
725 726 727 728
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
729
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
730 731
  return true;
}
N
nhzlx 已提交
732
#endif
N
nhzlx 已提交
733

734
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
735
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
736
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
737 738
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
739 740
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
741
#endif
742 743 744 745 746 747 748
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
749

750 751 752 753 754 755 756
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif

Y
Yan Chunwei 已提交
757 758 759 760 761 762
  // TODO(Superjomn) deduce the directory path.
  std::string out_path = inference::analysis::GetMemoryCachePath(
      config_.model_dir(), config_.prog_file());
  if (need_collect_var_shapes_for_memory_optim()) {
    SerializeBatchVarShapes(out_path);
  }
763 764
}

765
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
766
  std::lock_guard<std::mutex> lk(clone_mutex_);
767 768 769 770 771
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

Y
Yan Chunwei 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
void AnalysisPredictor::CollectVarShapes() {
  VLOG(4) << "Collecting var shapes";
  if (batch_var_shapes_.size() >= max_shape_collect_count_) return;
  std::map<std::string, std::vector<int>> var_shapes;
  for (auto var_name : inference_program_->Block(0).LocalVarNames()) {
    auto *var = sub_scope_->FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(var);
    if (var->Type() == framework::VarTypeTrait<framework::LoDTensor>::kId ||
        var->Type() == framework::VarTypeTrait<framework::Tensor>::kId) {
      auto &tensor = var->Get<framework::LoDTensor>();
      auto shape = framework::vectorize(tensor.dims());
      var_shapes[var_name].assign(shape.begin(), shape.end());
    }
  }
  batch_var_shapes_.push_back(var_shapes);
  LOG_FIRST_N(INFO, 1) << "Collected " << batch_var_shapes_.size()
                       << " batch of var shapes for analysis";
}

void AnalysisPredictor::SerializeBatchVarShapes(const std::string &path) {
  LOG(INFO) << "serialize batch var shapes to " << path;
  std::ofstream file(path);
  if (!file.is_open()) {
    LOG(ERROR) << "failed to serialize the var shapes to " << path;
    return;
  }

  // The sirialized data format:
  // <tensor_name>:dim0,dim1,dim2,;
  for (auto &batch : batch_var_shapes_) {
    for (auto &ele : batch) {
      file << ele.first << ":";
      for (size_t i = 0; i < ele.second.size() - 1; i++) {
        file << ele.second[i] << ",";
      }
      file << ele.second.back() << ";";
    }
    file << "\n";
  }
}

bool AnalysisPredictor::need_collect_var_shapes_for_memory_optim() {
  if (need_collect_var_shapes_ >= 0) return need_collect_var_shapes_;
  bool need = false;
  // check if the cache exists
  if (!config_.enable_memory_optim()) {
    need = false;
Y
Yan Chunwei 已提交
819
  } else if (config_.static_memory_optim_ &&
Y
Yan Chunwei 已提交
820 821 822
             !inference::IsFileExists(inference::analysis::GetMemoryCachePath(
                 config_.model_dir(), config_.prog_file()))) {
    need = true;
Y
Yan Chunwei 已提交
823 824
  } else if (config_.static_memory_optim_ &&
             config_.static_memory_optim_force_update_) {
Y
Yan Chunwei 已提交
825 826 827 828 829 830 831
    need = true;
  }

  need_collect_var_shapes_ = need ? 1 : 0;
  return need;
}

832
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
833 834 835
  return inference_program_->Proto()->SerializeAsString();
}

Y
Yan Chunwei 已提交
836
template <>
837 838 839 840
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
841 842
}

843
}  // namespace paddle
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
866
USE_TRT_CONVERTER(split);
867 868
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
869
USE_TRT_CONVERTER(leaky_relu);
870
#endif
871

N
nhzlx 已提交
872
#if PADDLE_WITH_ANAKIN
873
USE_ANAKIN_CONVERTER(mul);
874 875
USE_ANAKIN_CONVERTER(fc);
USE_ANAKIN_CONVERTER(conv2d);
876
USE_ANAKIN_CONVERTER(conv2d_fusion);
877 878 879 880 881 882 883
USE_ANAKIN_CONVERTER(concat);
USE_ANAKIN_CONVERTER(split);
USE_ANAKIN_CONVERTER(relu);
USE_ANAKIN_CONVERTER(sigmoid);
USE_ANAKIN_CONVERTER(tanh);
USE_ANAKIN_CONVERTER(pool2d);
USE_ANAKIN_CONVERTER(elementwise_add);
884
USE_ANAKIN_CONVERTER(elementwise_mul);
885 886 887 888 889 890 891
USE_ANAKIN_CONVERTER(batch_norm);
USE_ANAKIN_CONVERTER(flatten);
USE_ANAKIN_CONVERTER(reshape);
USE_ANAKIN_CONVERTER(transpose);
USE_ANAKIN_CONVERTER(softmax);
USE_ANAKIN_CONVERTER(detection_out);
USE_ANAKIN_CONVERTER(density_prior_box);
892 893
USE_ANAKIN_CONVERTER(dropout);
USE_ANAKIN_CONVERTER(sum);
N
nhzlx 已提交
894
USE_ANAKIN_CONVERTER(prior_box);
895 896
USE_ANAKIN_CONVERTER(leaky_relu);
USE_ANAKIN_CONVERTER(affine_channel);
897 898
USE_ANAKIN_CONVERTER(relu6);
USE_ANAKIN_CONVERTER(swish);
899
USE_ANAKIN_CONVERTER(shuffle_channel);
N
nhzlx 已提交
900
#endif