activation_op.h 31.9 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
11 12

#pragma once
D
dzhwinter 已提交
13 14 15
#include <glog/logging.h>
#include <string>
#include <unordered_set>
16 17
#include <utility>
#include <vector>
18

C
Clementine 已提交
19 20 21 22 23
#include <cmath>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
27
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
28

29 30 31 32
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
qijun 已提交
33 34 35
namespace paddle {
namespace operators {

D
dzhwinter 已提交
36 37 38 39 40 41 42 43 44 45
/* Use ugly global variable, for the using in python layer side
   Please refer to the layer_helper.py and get the details.
 */
static std::unordered_set<std::string> InplaceOpSet = {
    "sigmoid", "exp",        "relu",  "tanh",      "sqrt",         "ceil",
    "floor",   "reciprocal", "relu6", "soft_relu", "hard_sigmoid",
};

static bool IsInplace(std::string op) { return InplaceOpSet.count(op); }

Q
QI JUN 已提交
46
template <typename DeviceContext, typename Functor>
47 48
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
49
 public:
50 51
  using T = typename Functor::ELEMENT_TYPE;

Q
qijun 已提交
52
  void Compute(const framework::ExecutionContext& context) const override {
Y
Update  
Yang Yu 已提交
53 54 55 56 57 58 59 60 61 62
    auto& X = detail::Ref(context.Input<framework::Tensor>("X"),
                          "Cannot get input tensor X, variable name = %s",
                          context.op().Input("X"));

    auto& Out = detail::Ref(context.Output<framework::Tensor>("Out"),
                            "Cannot get output tensor Out, variable name = %s",
                            context.op().Output("Out"));
    Out.mutable_data<T>(context.GetPlace());
    auto x = framework::EigenVector<T>::Flatten(X);
    auto out = framework::EigenVector<T>::Flatten(Out);
Q
QI JUN 已提交
63 64
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
65
    Functor functor;
66 67 68 69 70

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
F
fengjiayi 已提交
71
    functor(*place, x, out);
Q
qijun 已提交
72 73 74
  }
};

Q
QI JUN 已提交
75
template <typename DeviceContext, typename Functor>
76 77
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
78
 public:
79
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
80
  void Compute(const framework::ExecutionContext& context) const override {
F
fengjiayi 已提交
81 82 83
    auto* Out = context.Input<framework::Tensor>("Out");
    auto* dOut =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
Q
qijun 已提交
84 85 86
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    dX->mutable_data<T>(context.GetPlace());

F
fengjiayi 已提交
87 88
    auto dout = framework::EigenVector<T>::Flatten(*dOut);
    auto out = framework::EigenVector<T>::Flatten(*Out);
Q
qijun 已提交
89
    auto dx = framework::EigenVector<T>::Flatten(*dX);
Q
QI JUN 已提交
90 91
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
92
    Functor functor;
93 94 95 96
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
D
dzhwinter 已提交
97 98 99 100 101 102
    bool inplace = functor.Inplace();
    if (!inplace) {
      auto* X = context.Input<framework::Tensor>("X");
      auto x = framework::EigenVector<T>::Flatten(*X);
      functor(*place, x, out, dout, dx);
    } else {
M
minqiyang 已提交
103
      VLOG(10) << " Inplace activation ";
D
dzhwinter 已提交
104 105 106
      auto x = framework::EigenVector<T>::Flatten(*dX);
      functor(*place, x, out, dout, dx);
    }
Q
qijun 已提交
107 108 109
  }
};

110 111 112 113 114 115 116
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
D
dzhwinter 已提交
117 118 119 120 121 122 123 124

  /* NOTE(*): Output reuse X memory if X is not dependented by its Gradient.
     For example, sigmoid op's gradient didn't involve x, so its output can
     reuse
     input memory. But abs op's gradient use x, it can not be inplaced.
     gradient did use x.
   */
  bool Inplace() const { return false; }
125 126
};

127
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
128
template <typename T>
129
struct SigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
130 131 132
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
133 134 135
  }
};

136
template <typename T>
137
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
138
  bool Inplace() const { return IsInplace("sigmoid"); }
F
fengjiayi 已提交
139 140 141 142
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out * (static_cast<T>(1) - out);
Q
qijun 已提交
143 144 145
  }
};

146 147 148 149
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
F
fengjiayi 已提交
150
// out = -log( exp(0) + exp(-x)) [since exp(0) = 1]
151 152 153 154 155 156 157 158 159 160
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
161 162
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
163
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
F
fengjiayi 已提交
164
    out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
165 166 167 168 169 170 171 172
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
173 174 175
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
176 177
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
F
fengjiayi 已提交
178
        dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
179 180 181
  }
};

Q
qijun 已提交
182
// exp(x) = e^x
183 184
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
185 186 187
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.exp();
Q
qijun 已提交
188 189 190
  }
};

191 192
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
193
  bool Inplace() const { return IsInplace("exp"); }
F
fengjiayi 已提交
194 195 196 197
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out;
Q
qijun 已提交
198 199 200
  }
};

Q
qijun 已提交
201
// relu(x) = max(x, 0)
Q
qijun 已提交
202
template <typename T>
203
struct ReluFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
204 205 206
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0));
Q
qijun 已提交
207 208
  }
};
Q
qijun 已提交
209

Q
qijun 已提交
210
template <typename T>
211
struct ReluGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
212
  bool Inplace() const { return IsInplace("relu"); }
F
fengjiayi 已提交
213 214 215
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
216
    dx.device(d) = dout * (out > static_cast<T>(0)).template cast<T>();
Q
qijun 已提交
217 218
  }
};
Q
qijun 已提交
219

C
Clementine 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
// gelu(x) = 0.5 * x *  (1 + erf(x / sqrt(2)))
template <typename T>
struct GeluFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    auto temp =
        ((x * static_cast<T>(M_SQRT1_2)).erf()).template cast<T>().eval();
    out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
  }
};

template <typename T>
struct GeluGradFunctor : BaseActivationFunctor<T> {
  bool Inplace() const { return IsInplace("gelu"); }
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    auto temp = (static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
                 ((-static_cast<T>(0.5) * x.square()).exp()))
                    .template cast<T>()
                    .eval();
    dx.device(d) = dout * (out / x + temp);
  }
};

245
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
246 247
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
248 249 250
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.tanh();
Q
qijun 已提交
251 252 253 254
  }
};

template <typename T>
255
struct TanhGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
256
  bool Inplace() const { return IsInplace("tanh"); }
F
fengjiayi 已提交
257 258 259 260
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) - out * out);
Q
qijun 已提交
261 262 263
  }
};

K
Kavya Srinet 已提交
264 265 266 267
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
268 269 270
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x - x.tanh();
K
Kavya Srinet 已提交
271 272 273 274 275
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
276 277 278 279
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x.tanh() * x.tanh());
K
Kavya Srinet 已提交
280 281 282
  }
};

283 284 285 286 287 288 289 290 291
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
292 293
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
294 295
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
296
    out.device(d) = x * (temp1 + temp2);
297 298 299 300 301 302 303 304 305 306 307
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
308 309 310
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
311 312
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
313
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
314 315 316
  }
};

K
Kexin Zhao 已提交
317
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
318 319 320 321 322 323 324 325
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

F
fengjiayi 已提交
326 327
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
328 329 330
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
331
    out.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
332 333 334 335 336 337 338 339 340
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
F
fengjiayi 已提交
341 342 343
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
344 345 346
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
347
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
348 349 350
  }
};

Q
qijun 已提交
351
// sqrt(x) = x^(1/2)
352 353
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
354 355 356
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.sqrt();
Q
qijun 已提交
357 358 359 360
  }
};

template <typename T>
361
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
362
  bool Inplace() const { return IsInplace("sqrt"); }
F
fengjiayi 已提交
363 364 365
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
C
chengduo 已提交
366
    dx.device(d) = static_cast<T>(0.5) * dout / out;
Q
qijun 已提交
367 368 369
  }
};

D
dzhwinter 已提交
370 371 372
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
373 374 375
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.ceil();
D
dzhwinter 已提交
376 377 378 379 380
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
381
  bool Inplace() const { return IsInplace("ceil"); }
F
fengjiayi 已提交
382 383 384
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
385
    dx.device(d) = static_cast<T>(0) / out;
D
dzhwinter 已提交
386 387 388 389 390 391
  }
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
392 393
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Q
Qiao Longfei 已提交
394
    out.device(d) = x.floor();
D
dzhwinter 已提交
395 396 397
  }
};

C
add cos  
chengduoZH 已提交
398 399 400 401 402
template <typename T>
struct Sine {
  HOSTDEVICE T operator()(const T& val) const { return sin(val); }
};

403 404 405 406 407 408 409
template <>
struct Sine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(sin(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
410 411 412 413 414
template <typename T>
struct Cosine {
  HOSTDEVICE T operator()(const T& val) const { return cos(val); }
};

415 416 417 418 419 420 421
template <>
struct Cosine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(cos(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
// cosine'(x) = -sin(x)
template <typename T>
struct CosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = -dout * x.unaryExpr(Sine<T>());
  }
};

// cosine(x) = cos(x)
template <typename T>
struct CosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Cosine<T>());
  }
};

// sine'(x) = cos(x)
template <typename T>
struct SinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.unaryExpr(Cosine<T>());
  }
};

// sine(x) = sin(x)
template <typename T>
struct SinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Sine<T>());
  }
};

D
dzhwinter 已提交
460 461 462
// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
463 464 465
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.round();
D
dzhwinter 已提交
466 467 468
  }
};

Q
qijun 已提交
469
// abs(x) = |x|
470 471
template <typename T>
struct AbsFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
472 473 474
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.abs();
Q
qijun 已提交
475 476 477
  }
};

478 479
template <typename T>
struct AbsGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
480 481 482 483
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.sign();
484 485 486
  }
};

Q
qijun 已提交
487 488
// reciprocal(x) = 1 / x
template <typename T>
489
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
490 491 492
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
493 494 495
  }
};

496
template <typename T>
497
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
498
  bool Inplace() const { return IsInplace("reciprocal"); }
F
fengjiayi 已提交
499 500 501 502
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(-1) * out * out;
Q
qijun 已提交
503 504 505 506
  }
};

// log(x) = natural logarithm of x
507 508
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
509 510 511
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log();
Q
qijun 已提交
512 513 514
  }
};

515
template <typename T>
516
struct LogGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
517 518 519 520
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / x);
Q
qijun 已提交
521 522 523 524
  }
};

// square(x) = x^2
525 526
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
527 528 529
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.square();
Q
qijun 已提交
530
  }
531
};
Q
qijun 已提交
532

533
template <typename T>
534
struct SquareGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
535 536 537 538
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(2) * x;
539 540 541
  }
};

542 543 544 545 546 547 548 549 550 551
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
552

F
fengjiayi 已提交
553 554 555
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
556
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
557 558 559
  }
};

560 561 562 563 564 565 566
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
F
fengjiayi 已提交
567 568 569 570
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
571 572
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
573 574 575
  }
};

576 577 578 579 580 581 582 583 584
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
585 586 587
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
588
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
589 590 591 592 593 594 595 596 597
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
D
dzhwinter 已提交
598
  bool Inplace() const { return IsInplace("relu6"); }
F
fengjiayi 已提交
599 600 601
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
602 603 604 605
    dx.device(d) =
        dout *
        ((out > static_cast<T>(0)) * (out < static_cast<T>(threshold)))
            .template cast<T>();
606 607 608
  }
};

K
kexinzhao 已提交
609 610 611 612 613 614 615
// softplus(x) = log(1 + exp(x))
// When x is a very large positive number, exp(x) may explode to inf,
// Using trick below for numerical stability
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// Then: softplus(x) = max(x, 0) + log(exp(-max(x, 0)) + exp(x - max(x, 0)))
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
616 617
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
K
kexinzhao 已提交
618
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
619
    out.device(d) = temp + (((-temp).exp() + (x - temp).exp()).log());
K
kexinzhao 已提交
620 621 622 623 624 625 626 627 628
  }
};

// d(softplus(x))/dx = exp(x) / (1 + exp(x))
// For numerical stability:
// d(softplus(x))/dx = exp(x - max(x, 0)) / (exp(-max(x, 0)) +
// exp(x - max(x, 0)))
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
629 630 631
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
K
kexinzhao 已提交
632
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
633 634
    dx.device(d) =
        dout * ((x - temp).exp() / ((-temp).exp() + (x - temp).exp()));
K
kexinzhao 已提交
635 636 637
  }
};

638 639
// softsign(x) = x / (1 + |x|)
template <typename T>
640
struct SoftsignFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
641 642 643
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
    out.device(d) = x / (static_cast<T>(1) + x.abs());
644 645 646 647 648 649
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
650
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
651 652 653
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
654
    dx.device(d) =
F
fengjiayi 已提交
655
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
656 657 658
  }
};

659 660 661 662 663 664
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
665

F
fengjiayi 已提交
666 667
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
668 669
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
670
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
671 672 673
  }
};

674 675 676 677 678 679
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
D
dzhwinter 已提交
680
  bool Inplace() const { return IsInplace("soft_relu"); }
F
fengjiayi 已提交
681 682 683
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
684
    auto tmp = static_cast<T>(threshold);
D
dzhwinter 已提交
685
    auto temp = ((out > -tmp) * (out < tmp)).template cast<T>().eval();
F
fengjiayi 已提交
686
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
687 688 689
  }
};

K
Kavya Srinet 已提交
690 691 692 693 694 695
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
696

F
fengjiayi 已提交
697 698 699
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
700 701 702
  }
};

K
Kavya Srinet 已提交
703 704 705 706 707 708
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
709 710 711
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
712 713
    auto temp1 = static_cast<T>(alpha) *
                 (x < static_cast<T>(0)).template cast<T>().eval();
K
Kavya Srinet 已提交
714
    auto temp2 = (x >= static_cast<T>(0)).template cast<T>().eval();
F
fengjiayi 已提交
715
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
716 717 718
  }
};

719 720 721 722 723 724
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
725

F
fengjiayi 已提交
726 727 728 729 730
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0)) +
                    (static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)))
                        .cwiseMin(static_cast<T>(0));
731 732 733
  }
};

734 735 736 737 738 739
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
740 741 742 743 744
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x > static_cast<T>(0)).template cast<T>() +
                   dout * (out + static_cast<T>(alpha)) *
Y
Yu Yang 已提交
745
                       (x < static_cast<T>(0)).template cast<T>();
746 747 748
  }
};

Q
QI JUN 已提交
749
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
750 751 752 753 754 755
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
756 757 758
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.pow(static_cast<T>(factor));
759 760 761
  }
};

762 763 764 765 766 767
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
768 769 770 771
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(factor) *
C
chengduo 已提交
772
                   x.pow(static_cast<T>(factor) - static_cast<T>(1));
773 774 775
  }
};

776 777 778 779 780 781 782
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
783

F
fengjiayi 已提交
784 785 786
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
787
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
788 789 790
  }
};

791 792 793 794 795 796 797
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
798

F
fengjiayi 已提交
799 800 801
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
802 803 804
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
F
fengjiayi 已提交
805
    dx.device(d) = dout * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
806 807 808
  }
};

809 810 811 812 813 814 815
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
816 817
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
818
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
819
    out.device(d) = (x > th).template cast<T>() * x;
820 821 822 823 824 825 826 827 828 829
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
830 831 832
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
833
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
834
    dx.device(d) = dout * (x > th).template cast<T>();
835 836 837
  }
};

838 839 840 841 842 843 844 845
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
846 847
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
848
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
F
fengjiayi 已提交
849 850
    out.device(d) =
        temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
851 852 853 854 855 856 857 858 859 860
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }
D
dzhwinter 已提交
861
  bool Inplace() { return IsInplace("hard_sigmoid"); }
F
fengjiayi 已提交
862 863 864 865 866 867 868
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
                   ((out > static_cast<T>(0)) * (out < static_cast<T>(1)))
                       .template cast<T>() *
                   static_cast<T>(slope);
869 870 871
  }
};

A
Abhinav Arora 已提交
872 873 874 875 876 877 878
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
879 880 881
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
A
Abhinav Arora 已提交
882 883 884 885 886 887 888 889 890 891
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
892 893 894
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
A
Abhinav Arora 已提交
895
    auto temp1 = static_cast<T>(1) /
896
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
D
dzhwinter 已提交
897 898
    auto temp2 = temp1 * (static_cast<T>(1) - (static_cast<T>(beta) * out));
    dx.device(d) = dout * ((static_cast<T>(beta) * out) + temp2);
A
Abhinav Arora 已提交
899 900 901
  }
};

Q
qijun 已提交
902 903
}  // namespace operators
}  // namespace paddle
904

905 906 907 908
#define FOR_EACH_KERNEL_FUNCTOR(__macro)                             \
  __macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor);              \
  __macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);     \
  __macro(exp, ExpFunctor, ExpGradFunctor);                          \
909
  __macro(relu, ReluFunctor, ReluGradFunctor);                       \
C
Clementine 已提交
910
  __macro(gelu, GeluFunctor, GeluGradFunctor);                       \
911 912 913 914
  __macro(tanh, TanhFunctor, TanhGradFunctor);                       \
  __macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor);     \
  __macro(sqrt, SqrtFunctor, SqrtGradFunctor);                       \
  __macro(abs, AbsFunctor, AbsGradFunctor);                          \
D
dzhwinter 已提交
915 916
  __macro(ceil, CeilFunctor, ZeroGradFunctor);                       \
  __macro(floor, FloorFunctor, ZeroGradFunctor);                     \
C
add cos  
chengduoZH 已提交
917
  __macro(cos, CosFunctor, CosGradFunctor);                          \
C
add sin  
chengduoZH 已提交
918
  __macro(sin, SinFunctor, SinGradFunctor);                          \
D
dzhwinter 已提交
919
  __macro(round, RoundFunctor, ZeroGradFunctor);                     \
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
  __macro(reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);     \
  __macro(log, LogFunctor, LogGradFunctor);                          \
  __macro(square, SquareFunctor, SquareGradFunctor);                 \
  __macro(brelu, BReluFunctor, BReluGradFunctor);                    \
  __macro(soft_relu, SoftReluFunctor, SoftReluGradFunctor);          \
  __macro(pow, PowFunctor, PowGradFunctor);                          \
  __macro(stanh, STanhFunctor, STanhGradFunctor);                    \
  __macro(softplus, SoftplusFunctor, SoftplusGradFunctor);           \
  __macro(softsign, SoftsignFunctor, SoftsignGradFunctor);           \
  __macro(relu6, Relu6Functor, Relu6GradFunctor);                    \
  __macro(leaky_relu, LeakyReluFunctor, LeakyReluGradFunctor);       \
  __macro(tanh_shrink, TanhShrinkFunctor, TanhShrinkGradFunctor);    \
  __macro(elu, ELUFunctor, ELUGradFunctor);                          \
  __macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor);    \
  __macro(hard_sigmoid, HardSigmoidFunctor, HardSigmoidGradFunctor); \
A
Abhinav Arora 已提交
935
  __macro(swish, SwishFunctor, SwishGradFunctor);                    \
936
  __macro(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor);